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FLUID DYNAMICS:

An Introductory Text

by

Francis H. Harlow and Anthony A. Amsden .

ABSTRACT

This report presents a discussion of basic physical fluid dynamics, shows
some useful techniques for obtaining solutions, and illustrates a variety of fluid
flow phenomena by means of some solved problems. No prior fluid dynamics
experience is required of the reader. Topics include derivation of the equa-
tions, an examination of their properties, a simplified discussion of molecular
dynamics as related to fluid flows, a study of rarefactions and shocks, some
compressible-flow solutions, some incompressible-flow solutions, and an intro-
duction to numerical methods for high-speed con'puters.

L. Introduction

The mathematical study of fluid dynamics is based
upon the principles of conservation of mass, momentum,
and energy. Precise statements of these principles can be
written in the form of partial differential equations. If, in
addition, an equation is available that specifies the proper-
ties of the particular fluid under study, one has exactly as
many equations as unknowns and can proceed to look for
solutions to specific problems.

In general, these solutions are difficult to obtain.
The motion of a fluid is often extremely complicated,
involving distortions that cannot be described by simple
mathematical expressions. In many circumstances, how-
ever, a relatively easy analysis results in useful informa-
tion. In this report, we have compiled some of these in a
form intended for handy reference. We also present an
introduction to the mathematical aspects of fluid dynam-
ics that is meant to be useful to a person with a college
mathematics background but with no previous fluid-
dynamics experience.

In recent years, many formidable problems of fluid
dynamics have been solved by high-speed computers, us-
ing a variety of new solution techniques developed specifi-
cally to take advantage of this new capability. The proof-
testing of any new technique includes its trial for
problems with known solutions. Some of the examples
chosen for this report were selected because of their par-
ticular usefulness for comparison with computer results.
The choice is also influenced by their value in illustrating
the basic elements of fluid flow: expansion, compression,
shocks, and shears.

We make no claim that these solutions have never
before been published. Our purpose here is to compile
them from numerous diverse sources and to put them into
a form that will be useful for our purposes and, hopefully,
be of value to other investigators whose projects resemble
our own.




1. The Equations of Fluid Dynamics

A. The Viewpoint of Flux.

Consider a long cylinder filled with gas that can be
disturbed by the motion of a piston at the left end. This
gas is a special case of a “fluid,” and we shall often use
either word. When the piston moves to the right, the gas is
compressed; when it moves to the left, the gas expands. If
there are no leaks, the total amount of gas remains con-
stant in either case. We suppose, furthermore, that no
viscosity or heat conduction exists. Then the total mass of
fluid is exactly conserved, while the changes of momen-
tum and energy of the gas are determined entirely by the
actions of the piston.

If the piston moves rapidly enough, the gas near it
will be disturbed before any signal has had time to propa-
gate very far away. A sudden rightward motion, for exam-
ple, will set the adjacent gas into motion and compress it,
but far to the right the gas can still be at rest and at its
original density. This means that at any instant of time, t,
the gas density, p, will be a function of X, the distance
down the cylinder. In addition, the pressure, p, the veloc-
ity, u, and the heat energy per unit mass, I, will be func-
tions of x. At some later-instant, these functions of x will
be altered as a result of the forces exerted by the piston
and by the pressure within the gas. Thus each “field varia-
ble” is a function of x and t.

An observer looking into the cylinder through a
window will observe that gas rushes by, and, if the piston
moves back and forth, so will the gas. This motion carries
not only mass past the window, it also carries momentum
and energy. The flux of any of these quantities is the
amount of gas per unit time per unit area going past a
given point. The notion of a flux is fundamental to the
discussion of fluid motions. That part of the flux associ-
ated directly with the motion of the fluid itself (the
“carrying-along” flux) is referred to as the convective
flux. There are other fluxes, such as the energy transport
that comes from work done or from heat conduction even
when the gas is not moving. ’

The first mathematical concept to be established is
that the convective flux of any quantity is given by the
product of the gas velocity and the density of that quan-
tity. Thus,

Flux of mass = up,
Flux of momentum = upM,
Flux of energy = upE,

1-1).

where

P = mass per unit volume,
M = momentum per unit mass (= velocity, u),
and ‘

E = energy per unit mass.

To see this, consider the mass flux as an example. Let A
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be the cross-sectional area of the cylinder. In an elapsed
time, 8t, the fluid near the window moves a distance ust.
If the welocity is positive (rightwards), this means that
fluid from a distance udt to the left of the window will
move past the window during the time interval. The vol-
ume of fluid that goes by is, therefore,

Volume = Auét.

Since p is the mass per unit volume, then the total mass
that goes by is

Mass = pAudt.

Now the flux is defined as the mass per unit arca per unit
time, so that

Mass
Flux of mass = ———

and we get the first statement of Eq. (I1-1). The remaining
two can be derived similarly.

With these flux expressions established, we can now
derive the equations for the gas motion in the cylinder.
To do this, imagine two windows separated by a distance
dx. The total mass lying between the two windows is

mass = pASx,
the product of density and volume. This mass will, how-
ever, change with time because of the flux of mass going

by each window. Over an elapsed time, 8t, we have

later mass — earlier mass = amount entering

~—amount leaving
or

PASX~pASx = (pu)y ASt—(pu)g Adt,

in which p'is the later density and the subseripts refer to
fluxes at the left and right windows. Thus,

o -p _ _ g~ (ewy
5t ) &x

or, as 8x and 8t both go to zero,

9% _ _ a(pu)
ot ox

This, then, is the mathematical expression for the
conservation of mass. It contains two unknown functions,
p and u, both of which vary with position and time.

The equation expressing momentum conservation is
derived in a similar fashion but has one added feature. In
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addition to the contribution from convective flux at the
two windows, there is a change in momentum that results
from the forces exerted on the gas. To calculate this we
use Newton’s law of motion: force equals rate of change
of momentum. Now the total momentum in the interval
is puAdx. Using our expression for momentum flux, we
therefore get

(Pu)' Abx ~(PU)ASX = (Pu®), ABt - (Pu?), Abt

+P Abt - PRAdt
The last two terms are the expression of Newton’s law:
PA is the force and the product of this with the time
interval gives the contribution to the momentum change.
As before, this can be reduced to the equation

alpu) _ _ a(pw®)  op ,
ot ox ox

which is the required momentum conservation equation.
We now have two equations, but in the process have intro-
duced one more variable, the pressure.

Derivation of the energy equation is similar to that
of the momentum equation. In addition to the convective
flux of energy, there are terms expressing the work done
by the forces on the gas in the interval. This work done
per unit time is equal to the product of force and veloc-
ity. The reader can verify that the resulting equation is

0E _ _ 3puE _ 3pu
at ox ox

which closely resembles the form of the momentum
equation.

As before, however, the derivation of one more
cquation has introduced one more variable, E. Thus, for
the four unknown functions, p, u, p, and E, we have three
cquations

% , 3pu) _ 4 (11-2)
at ox

pw) | 3,2 = 0, g
50 T oag v+ ) = 0 (1-3)
0pE 9 =

TR T (puE + pu) = 0 , (11-4)

One more equation is required, and this time we can find
one that does not introduce a new variable. First, how-
ever, it is useful to recognize that E, the total energy per
unit mass. can be expressed as the sum of the heat and
Kinetic energies:

E =1+ %u? (1-5)
Thus, 1 can take the place of E as the fourth unknown
function.

B. The Equation of State.

The final equation we need is one that describes the
properties of the fluid itself, the equation of state. As

~usually used, it expresses the fact that the pressure is

everywhere a function of the density and of the heat
energy per unit mass. For many gases, this expression is
written

p= (Y-Dpl, (1i-6)
in which v is a dimensionless constant that has different
values for different gases. For example, helium and neon
have y = 1.67; hydrogen, oxygen, nitrogen, and air have y
= 1.4; carbon dioxide has y = 1.3. Usually, the more
complicated the chemical formula for the gas, the lower is
its value of v, but for every gas 7 is greater than unity.
(The derivation of these values for 7 is given in Chap. IV.)

An equation of state with much more general appli-
cability is the Griineisen equation of state, which can be
written

Y
p.—:pH—}-—\-/s—(I—IH).

where
2 (V, - V)
pH = 3 >
[Vo = s(Vy - V)]
I 1| eMe-V) _
Ho 21V -s(v,-V)
Yy =25 =1 ,
and
V=1/p

This is a threc-parameter expression, which de-
scribes well the properties of a large number of gases and
mctals. The parameters arc P, , the normal density of the
material, c, the spced of sound in the unshocked material,
and vy, the Griineisen ratio. The last is related to v in the
polytropic-gas equation of state by Y, = 71— 1. For most
metals, the value of A lies between 1.0 and 2.0; for a few
metals, v, < 1.0 can be appropriate. '

If the departures from normal density are slight,
then the Griineisen equation can be simplified to the form

p=c*(p-p)+ (¥-Dpl , (11-7)
which we call the “stiffened-gas” equation of state. For
analytical studies, this simpler form is much easier to ma-
nipulate, while still retaining the essential qualitative fea-
tures of a large class of materials.

The literature is filled with many other examples of
equations of state, appropriate for a host of specialized -
circumstances. Some are extremely complicated expres-
sions; some attempt to indicate such exotic behavior that
they can be recorded only as tables of numbers for which
no analytical fit is adequate. For the purposes of this

discussion, however, the simple gas and metal equations

of state written above will be sufficient.




III. Some Properties of the Equations

A. The Lagrangian Time Derivative.

Although the four equations for four unknown
functions can be solved, in principle, for-any arbitrary
motions of the piston, we find in practice that such solu-
tions can be very difficult to obtain. Nevertheless, the
equations have some properties that shed considerable
light upon the general types of processes that can occur in
the gas within our cylinder.

From their raw form derived in the previous chap-
ter, the equations can be manipulated into a variety of
other equivalent expressions. By expanding derivatives,
Eq. (11-3) can be written

du 0 du  ydeu 4 % _
"at+“at+"“ax+" ax +ax =0

Multiply Eq. (II-2) by u, and subtract the result from this
expanded momentum equation. Then the result is

ou ou ag ’
— U — = 0.
Poc t P i t i

Likewise, from Egs. (1I-2) and (II-4) we can derive

% . 3 , dpu _
P PPt =0

Thus, by expanding the three equations and dividing by p
where appropriate, we obtain

3B, ,90 u _ o, 111-1
a Pl TP (L1
8u  gou 13 _ g, (111-2)
ot ox p ax

OE B8E 1 dpu _ 4. 11-3
a T th T T (111-3)

Notice how similar the first two terms appear in all
three equations. The first term is called the Eulerian time
derivative, and the second the convection term. We now
shall see how, in each case, these combine to form the
Lagrangian time derivative. Consider first the following
identity for the total differential of a function of two
variables, f{x,t):

af = O g¢ 4 2 gy |
ot 0x

This states that for arbitrary slight changes in t and x
(denoted by dt and dx) the function f changes by an
amount df, as given by the formula. Alternatively, we
may write

if=2§+\(§£) (éx_
dt — at (0X dt

Now, we consider the special case in which we choose dx
and dt to follow along the motion of an element of fluid.

"Then

dx _
_. .,

dt
and we obtain

df_of  of
dt 3t “3x

This, then, is an expression for the rate of change of f
along the motion of the fluid, the Lagrangian derivative.
It is, therefore, to be contrasted with the Eulerian deriva-
tive, af/0t, which gives the rate of change of f at a fixed
position in space (at one of the windows, for example).
Thus, Egs. (I1I-1), (11I-2), and (111-3) can be rewritten in
the form

dp, du_
Str5 =0, v(I!M)
gu 10 _, (111-5)
dt p ox ’
GE ,1dpu _, (111-6)
dt p & ’

B. Adiabatic Processes.

A useful alternative for the energy equation can be
obtained by substituting Eq. (1I-5) into Eq. (111-6). At the
same time, the derivative of pu is expanded:

d, du, 1 ( 3 gg)=
dt+udt+p(uax+pax 0.

Multiply Eq. (III-5) by u and subtract the product from
this expanded form. The result is the alternative energy
equation

dl _pdu (11-7)
=t &= =0 .

dt p ox 0

We next show that a partial solution can be ob-
tained even before any particular problem has been speci-
fied. The groundwork for obtaining the partial solution
has already been laid. The next step is to eliminate du/dx
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between Eqgs. (1114) and (I1I-7):

da _pdp
dt p? dt
or .
da_p 11i-8
4 (111-8)

For a fluid that has no viscosity or external source of heat
(the case we are, in fact, considering), this result is equiva-
lent to the first law of thermodynamics. Together with
the equation of state, it provides an equation that can be
integrated with ease. For example, consider the gas equa-
tion of state, p = (y— 1)pl. With this substitution for p,
Eq. (I11-8) becomes

dI |
- 0D p
from which we obtain

I = Kp‘y-l
p=(r-1)Kpo7

(11-9)

in which K is a constant of integration.

To interpret this result, recall that the differentials
in Eq. (III-8) refer to changes along the motion of the
fluid. Thus, for a given element of fluid, Eq. (I11-9) shows
how pressure and internal energy are related to density as
this element moves about. In general, the value of K will
be different for every element, but if K should initially be
the same everywhere, it always will remain so and Eq.
(111-9) can be used for any time or place in the cylinder.

Thus, our equations have predicted an unexpected
property of the gas, given in Eq. (III-9): that the motions
will be adiabatic, with Eq. (III-9) showing two forms of
the adiabatic equation of state for a gas. We emphasize,
however, that the adiabatic conclusion depends crucially
upon the validity of the equations we started with. If
viscosity or heat conduction are not negligible, then the
equations are lacking some essential terms that would pre-
clude arriving at Eq. (I1I-9). If the peculiar phenomenon
that we call a shock should arise, then, likewise, the fluid
changes will not everywhere be adiabatic.

For the simplified metal equation of state, Eq.
(11-7), we have

d[ 2 p_pO

S =2
o2

+(7*l)-,l;

The differential equation can be solved to give
1 Po\
= Y1 _ )2 -0
I = Ko y <7 -1 7p)

2
a‘p,

(111-10)

p=(-DKo?-

These, then, describe the adiabatic behavior of this ideal-
ized metal equation of state.

If the gas in the cylinder is initially homogeneous,
and at rest, the subsequent motion induced by the piston
will be adiabatic to within a good degree of approxima-
tion, and the adiabatic equation of state for pressure as a
function of density can be used in place of the energy
equation. One then has the three equations in three
unknowns:

%, %, du_

ot ax+”3§(
du, du, 1dp_ : (ur-11)
8t+uax+pax-0

p = f(o) J

where the last equation is the adiabatic equation of state.
(If the piston motion is strongly compressive, one must
always be concerned about the formation of a shock, to
be discussed below, in which case the adiabatic assump-
tion is partially invalid.)

C. The Sound Speed.

We next investigate a particularly interesting and
significant property of Eqs. (I1I-11): they indicate that
signals are propagated with finite speed, the so-called
sound speed, and enable us to derive an expression for it.

Sound signals involve only very slight motions of
the gas, and the resulting spatial variations of density and
velocity are also very small. Thus, such products as
u 3p/dx and u du/dx are even smaller and can be dropped
from the equations. In addition, we note that '

op _ 9 df
ox ox dp °

so that Eqgs. (III-11) become

9p du _
at TPx=0

du, (1 df\dp _
at+(p dp)ax_o

Next, we neglect the variations of p and 1/p df/dp, treat-
ing them as constants, a procedure that can be rigorously
justified for the purpose of deriving the sound-speed
formulas. Then it can be verified by direct substitution
that the most general solution of these equations is for p
to be any function of x + ct, where

2 - df

af (111-12)
dp

]

C

The velocity, u, is then also a function of x + ct. The
significance of this type of solution is that it represents a




traveling wave of arbitrary form, whose speed is c. Thus

the sound speed, ¢, is given by the square root of the

derivative of the adiabatic expresion for the pressure.
For a gas, refer to Eq. (I11-9), which shows that

c = ,/1,,9 =\r-n1 ,

(111-13)

while for the simplified metal equation of state, Eq.
(111-10), the sound speed is

- F )
= \/7(7-1)1 + a’[’r-('r'*l) %9]

From the latter, we note that for p = p, and I = 0, we
obtain ¢ = a, giving an interpretation of the simplified
metal equation-of-state constant that it represents the
sound speed when the metal is cold and at normal
density. (“Cold” means much cooler than the tempera-
tures adjacent to high explosives where the equation of
state is to be applied. Room temperature qualifies as
*cold” for this purpose.) .

It also is useful to have a sound-speed formula that
by-passes the derivation of an adiabatic equation of state.
In general, the equation of state would be expressible in
the form of p = F,(p,I), which can be solved for the
alternative form ‘

I=F2(p,0).

We have seen that ¢ = (dp/dp),, where the subscript A
refers to the adiabatic equation-of-state derivative. (This is
simply a restatement of Eq. (Ill-12) in different nomen-
clature.) Now the adiabatic condition, Eq. (I1I-8), can be
expressed as

p 3/ \op/\dp/,

the right side being the identity expansion of dI/dp. Thus,

P 2{) + 2 a_l)
p? <6p ¢ \%

(111-14)

or

= h—(érm , (H1-15)
op
where the partial derivatives are taken from the equation
of state solved for 1 as a function of p and p. For the gas,
for example, the solution for I is
] = —P
(r-Dp

and the substitution of this into Eq. (11I-15) leads directly
to Eq. (III-13). In general this approach, by-passing der-
ivation of the adiabatic equation of state, is both simpler
and more convenient.

A somewhat different sound-speed formula is
appropriate if the heat conduction rate is so great as to
cause a uniform constant temperature to persist in the
fluid: For a polytropic gas, for example, constant temper-
ature means a constant value of I, so that instead of Eq.
(I11-11) we have

%, o, w_,

ot ax+'°ax ’
du u (- DI dp _
at+u8x+ v ox 0

The sound signal analysis then shows that the isothermal
sound speed is

Ci = V('Y"l)l )

in contrast to the result in Eq. (111-13).

D. Expansion.

We now are in a position to distinguish more pre-
cisely between two basically different kinds of flows: the
expansion and the c?mpression. Together they form the
elements of all the types of one-dimensional flow that can
occur in the cylinder. The differences between an expan-
sion and a compression are so profound that it is better to
consider their properties separately.

The simplest type of expansion occurs when the
piston is rapidly withdrawn from a cylinder of gas that
was initially at rest. Before the piston commenced
moving, the gas density was p,,, its specific heat energy
was I, its pressure was p, = (v-1)p,l,, and its sound
speed was ¢, =+f(y~ 1)1,. As the piston moves, the gas
does work on it, therefore giving up some of its heat
energy. Additional heat energy is converted into the
kinetic energy of gas motion. On both accounts, I,
therefore, decreases in the vicinity of the piston. Corres.
pondingly, ¢ decreases also. Thus one finds an expanded
region of gas near the piston where the temperature,
density, pressure, and sound speed are lower than the
initial values, together with a region further down the
cylinder in which no change has yet occurred. The region
between these is called an expansion, or rarefaction, wave.
In Chap. V we explore in detail the structure of this wave
and show that its front travels with sound speed, c,, into
the undisturbed gas. Notice that it follows from the
qualitative discussion that any irregularity in the piston
motion, producing a traveling sound signal, can never
propagate to the front of the rarefaction wave because of
the decrease in sound speed near the piston.




E. Compressions and Shocks.

In contrast, a compression wave is formed when the
piston moves into the gas. The piston does work, produc-
ing both heat energy (thereby increasing I) and kinetic
energy. As a result, the sound speed near the piston is
greater than c,. Suppose that the piston velocity in-
creased with time through a succession of small jumps at
closely spaced intervals. Each jump in velocity would send
a new compression wave into the gas, each propagating
faster than the one ahead of it. The result is a piling up of
these compression waves in a manner not possible for a
succession of expansion waves. (Each expansion wave
would move more slowly than the one ahead of it,
producing an ever-widening expansion ““fan.”)

Where these compression waves pile up, the transi-
tion from an undisturbed to a compressed region becomes
virtually instantaneous, and takes place over a very nar-
row span. This, then, is called a “shock.”

Formation of a shock closely resembles the forma-
tion of a breaker when a wave runs up on a beach. In the
shallow water ahead, the wave speed is less than in the
deeper water behind. As a result the wave piles up more
and more onto its front. When the front is steep enough,
the wave crashes over, a type of relief not available to the
piled up compression waves in the gas. Thus, the analogy
ends when the breaker is formed. If, somehow, the break-
er front could be kept from crashing over, then the
analogy would persist and the vertical front of the wave
would become as sharp a discontinuity as the shock in the
gas.

For a piston moving into the gas with constant
speed, the gas between the piston and the shock is uni-
form in all its properties. It moves with the speed of the
piston, while the shock itself moves somewhat faster. In
the limit of a very weak shock, the speed of its motion is
just the sound speed, c,, of the undisturbed gas. Stronger
shocks move faster than ¢, and in the limit of a very
strong shock we shall show that

B+l
o 2

is independent of the value of c,. Here v is the shock
speed, v, is the piston speed, and 7 is the constant in the
gas equation of state. Many other properties of shocks can
be derived mathematically, and detailed compilation is
given in Chap. VL.

F. Contact Surfaces.

Another type of discontinuity, the contact surface,
can exist in a fluid. In contrast with a shock, fluid does
not flow through a contact surface. If we were to form a
contact surface in our cylinder of gas, we would observe
that the gas moves with the same speed, and has the same
pressure, on both sides. The density and specific heat
energy (and thus the temperature) are then discontinuous.
If the heat conduction coefficient is appreciable in the

gas, the contact surface soon becomes smeared out into a
region of transition between two states that still, of
course, have the same pressures and velocities.

A contact surface can be formed in our cylinder

~ through the use of a diaphragm. Thus, a membrane is

stretched across the cylinder, and the left side is pumped
to a higher pressure than the other. The experiment be-
gins when the diaphragm is broken. A shock proceeds to
the right and a rarefaction “ravels to the left. Moving slow-
ly rightwards from the initial diaphragm position is the
contact surface. The apparatus is now called a shock tube.
It is an instrument commonly employed for the creation
of shocks that can be studied in detail as they interact
with obstacles placed in their path. The theory of the
shock tube is discussed in detail in Chap. VII, where it is
shown how to predict accurately the entire flow pattern
after the diaphragm has been ruptured.

G. Three-Dimensional Flows.

The idealized one-dimensional flow of gas in a cylin-
der is a useful model for many significant circumstances.
More often, however, we must be concerned with fluid
dynamics in three space dimensions, and this introduces
several matters not yet discussed. First, we introduce the
possibility of large distortions: swirling, shearing, and
slipping. Second, we allow for the meaningful considera-
tion of incompressible flows. ,

In the cylinder as so far considered, all motion is
confined to move parallel to the axis, so that the distor-
tions have been precluded, and if the fluid is incompress-
ible, its motion is that of a rigid rod. Actually, of course,
all three-dimensional effects are possible in a cylinder. If a
partial obstruction is introduced, the flow around it can
be grossly distorted. Even if the fluid is incompressible, a
stirring action within the cylinder can set the fluid into
complicated swirling.

For such three-dimensional motions, the equations
can be derived in much the same way. The velocity, u,
now becomes a vector, _ﬁ, with components in each of the
coordinate directions. Equations (IlI-1), (IlI-2), and
(I11-3) generalize to the forms
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ot T @V + pyed =0 (111-16)
ou v s 1

3t T (U -vu + pvP =0, (m-17)
aE - -+

&+ @vE + ‘—:V'(pu) =0 ,  (L18)

in which we have

-

E=1+ 0.0 .

NP

In analogy to the previous demonstration, we can also
show that the Lagrangian time derivative (the rate of




change along the general three-dimensional motion of the
fluid) is

daf . of , .
a—at“‘(UV)f

and the analogy to Eqs. (IlI4), (III-5), and (III-6)
becomes

b, o

at u=0, (111-19)
di | 1_

m + pvp =0 , (111-20)
dE | zlv.,(pﬁ) =0 (111-21)

dt

From these can be derived identically the same adiabatic
equations and sound-speed formulas presented in Egs.
(I11-8) through (III-15), proving that those results are
much more universally valid than was suggested.

H. Incompressible Flows.

When a fluid cannot be compressed, its density, p, is
an absolute constant. The identity, o = constant, is thus
an additional one'that would seem to overdetermine the
unknown field variables. Actually, with an “incompressi-
ble” fluid we mean that the pressure depends so strongly
upon the density that small changes in the latter produce
very large changes in the former. Thys, for example, the
adiabatic equation of state for a gas, which can be put in
the form

= AN
= A
P=Az)"
has this property if 7 is very large. If we put p =p, into
Eqgs. (111-19) and (111-20), they become

vE=0 | (111-22)
a1

This gives enough equations to determine the solution. In
two space dimensions, x and y, for example, with the
velocity components u and v, respectively, we get

du av _

x tay "0 (111-24)
du .1 9p _

TR (111-25)
dv . 1 9p _ '

at Yo ey 0 (111-26)

Thus, we have three equations for the three unknown
functions, u, v, and p. By means of the energy equation,
Eq. (I11-21), the specific heat energy, [, could be found if
desired, but it is not necessary to know this for the basic
dynamical solution unless one adds terms to represent the
effects of buoyancy. '

There are many ways to solve the equations of in-
compressible flow. In more expanded form, these equa-
tions for two-dimensional flow are written

du  9v (111-27)
x ey 0o

ou du ou . 9 _ (111-28)
at TV TVt -0

ov., O . ov 99 _ '

m + uax + vay + By 0, (111-29)

where we use ¢ as an abbreviation for p/p,. One solution
technique consists of eliminating ¢: differentiate Eq,
(111-28) with respect to y and Eq. (111-29) with respect to
X. Subtracting the results then gives two equations in the
two unknowns, u and v. Another technique is based on
the assumption that

= Y
u dy
=%
vE ox ’

in which ¢, the “stream function,” becomes the un-

-known. This assumption satisfies Eq. (111-27) identically.

A third approach, useful for very tiny motions of incom-
pressible fluids, neglects the convective terms in Egs.
(111-28) and (I11-29). Combining the resulting equations
with Eq. (I11-27), we can then show that

%9 ¢ _
Z)x2+8y2 0.

a single equation in one unknown. Some of these solu-
tions are given in more detail in Chap. VIIi.

I. Viscosity.

So far we have neglected completely the viscous
effects. In some cases, especially of high-speed gas flows,
the effects of viscosity are negligible except very close to
the surfaces of rigid objects. For incompressible flows,
however, the viscous forces may strongly alter the pattern
of flow. We do not here consider the full compressible-
flow equations with viscosity; they are given at the end of
Chap. IV. For incompressible flows, they modify Eqgs.
(111-27), (111-28), and (111-29) to the expressions




a tay 0 (111-30)
du du v ou . 99
at ax dy  ox
3%u . d%u .
(L D8) ey, @D
v, v v 3
ot ox ay 0
(a2 3%y )
= +
ax® " ay?) T By (111:32)

where g, and g, are the components of gravitational
acceleration. The use of these equations is illustrated in
Chap. VIII, and their derivation is discussed in Chap. IV.
For fully compressible flows, the full equations for
viscous fluid dynamics are summarized in several forms
at the end of Chap. IV.

J. Lagrangian Coordinates.

Equations (1l1-4), (I1I-5), and (I1I-6) introduce the
Lagrangian time derivative, defined to be the variation
with time along the path of a fluid element. We can
complete the definition of one-dimensional Lagrangian
coordinates in the following way. Let x, be the coordi-
nate of a particular element of fluid at some reference
time (t=t,). Then the value of x, serves forever to
uniquely tag that particular element. It serves, therefore,
as a Lagrangian coordinate for that element and is forever
constant in time. In this respect, it differs from the
Eulerian coordinate, x, which varies with time. Indeed, x
is generally a function of X, and t, with the fluid velocity
being given by u = 0x/dt, X, held constant.

Let py(x,) be the density at Lagrangian position x,
and at time t,. Then

ox
p(x) (};;‘ = po(%o) (111-33)

expresses the fact that the mass in any Lagrangian-
coordinate interval also equals the mass in that interval as
viewed from the Eulerian-coordinate viewpoint. This,
then, enables us to complete the transformation to full
Lagrangian coordinates for the one-dimensional equa-
tions. For example,

1 9p
Po X,

p 0X

accomplishes this for the momentum equation.

In one dimension, we shall have several occasions
for using the Lagrangian forms, and it is useful to
summarize them here:

%  pou_
at | Py 0X, 0

du  op _ 11134
Po 3t ax o ( )

0E ., dpu
Po opu _
°3 Tax, 0

Usually, the analogous three-dimensional transfor-
mation to Lagrangian coordinates will involve such a
complicated Jacobian that no advantage is gained.

K. Time Derivatives of a Volume Integral.

Let )\(?,t) be the density of some quantity; then
there are two main types of volume integrals of A which
will be of interest:

A(Eulerian) = f AGLY) dr
\"/
and (111-35)
A(Lagrangian) = f MG, 1) t) dr,

[o]

The first is an integral over a volume V moving with the
fluid. The second, in which X is reexpressed as a function
of the Lagrangian coordinates, is an integral of A over
some fixed initial volume.

The time derivative of .the Lagrangian integral is
simple to perform; since each element of volume in the
sum is constant, the derivative is

dA( Lagranglan) f [a)\(ro ’t)]
2 TO

'To

(111-36)

Using this, the time derivative of the Eulerian
integral can be derived. We first transform it to a
Lagrangian integral:

A(Eulerian) = j AMEL @y ot)0t) f’.‘idr

Vo p °

b

where py/p is the transformation Jacobian (whose form
follows from the fact that p d7 = p,dr,). Thus,

dA(Eulerian)
dt :
- ] [ %?) "o A[a(pat/p)] }dT° :
VO ro p ?0




where all quantities in the integrand depend spatially on
the Lagrangian coordinates. Now the mass equation, Eq.
(I114), can be put into the form

[a(po/p)] =Pogi |
ot Jf, »p

[+]

where the divergence is Eulerian. Thus,

dA(Eulerian) _ [QL + v (Eg) dr
dt atlp, P °
VO

_ | ax R

—fL—t + RV'u]dT (111-37)
v

- f [g—:‘v-(m)] dr (111-38)
v

This type of transformation appears cumbersome at first
but is sometimes extremely useful. Note the special case

d _ DA
-dT/ pkd7=fp-l')t—dr
\V \Y

which follows from a similar derivation.

L. One-Dimensional Conservative Form.

In one dimension, the Eulerian equations can be
written

o , dpu _
at T ax -0

v 2 G2 4 p) =0

ot = ax b (111-39)

E . 9 .
—£—+$(-(puE+pu)=0

and the Lagrangian equations can be written
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3po/p)
at

dp u +
ot

9p,E
ot

+—.—.
0x

_%u _
ox,

ﬁ’;o'

ox

dpu

(111-40)

Equations (111-39) and (111-40) are called the conservative
forms. Integration of any one of them over a fixed space
interval (Eulerian or Lagrangian, as appropriate) reveals
the reason. Consider the Eulerian momentum equation as
an example. With x, and x, being fixed Eulerian
positions, we obtain

0 )
?t fpu dx = (pu® + Px=x; = (ou” + Plx=x,

Thus, there is no internal contribution to the timewise
variation of momentum in the interval; the momentum
changes only if there are boundary fluxes. In this case, the
boundary flux is composed of two terms. The transport
term, pu?, measures the rate at which momentum is
carried by the moving fluid; the force term, p, measures
the acceleration due to external pressures.
The conservative equations are all of the form

9A 9B

ot ox 0 ’

in which A is a quantity per unit volume and B is its flux.
If F(x,t) is any arbitrary function of its arguments, then

oF
B=a
oF
A=-Z
oax

is the most general solution of the equation. Now

"QEdt+dF

dF—at &-dx=Bdt—Adx

Since dF is a perfect differential, its integral around any
arbitrary closed path in the x-t plane is zero. Thus,

$(B dt—A dx) =0



This equation is equivalent to the original one. Thus, the
one-dimensional Eulerian equations in integral form are

$(pudt=p dx) =0

$ [(ou? + p)dt-pu dx] =0 »  (1I141)
¢ [(puE + pu)dt —pE dx] =0

and the Lagrangian equations are
¢ (udt + %(ldxo) =0
$(pdt—p,udx,)=0

$ (pudt-p, E dx,) =0

(111-42)

These equations in integral form are useful in  the
derivation of shock relations, since they hold even if the
field variables are discontinuous.

M. Other Coordinate Systems.

' The equations for a particular problem can often be
simpiified in form if a coordinate transformation is made.
Various compilations have been given of the equations in
the more common coordinate systems (see, for instance,
Pai).

A convenient starting point for transforming coordi-
nates is the set of equations in general vector, Eulerian
form. Consider, for example, the momentum equation:

o
pat+p(uV)u=—Vp

If 7 is one of the three unit vectors of some curvilinear
coordinate system, then the dot product of #§ with the
equation will give the appropnate component equation in
the desired system:

du
p a—t’l + pf - [(@-W)i) = - 22

an
where is the component of velocity in the direction of
%, and d 1s the change in distance along a path in the

" direction of 7. Now
1@ - V)8 = @ VYA - 0 (@Y

The second term on the right vanishes only if % is a
constant everywhere. Although 7 is always constant in
magnitude, it is not generally constant in direction, and
the second term does not vanish

As an example, consider the transformation to
cylindrical coordinates. The three unit vectors in the
radial, angular, and axial directions are, respectively, 1, 8,

and Z. We are thus concerned with finding VT, VG and
VZ. In general, in cylindrical coordinates,

At M, 4100 ,00
Va ar+0r60+zaz ’

where the order of vectors is preserved throughout. Thus
we must find, for example, 37/36. A graphical approach
(see Fig. III-1) will be illustrative. The, vector T, - T,
points approximately in the dlrectlon of 6 (and will do so
exactly as 8,-6, = 0). Also, T,~T, has ]1m1tmg magni-
tude (0,—6,) times,_ the magmtude of T, or %,. Thus
T=-1)/(02-0,) =~ 8 and ot/a0 = 8. Similarly, the other
appropriate derivatives may be found, and vi=(1/1)9 8,
V8=-(1/1)81,Vi= 0 Thus

i [V =
- [ V)O] —-—

-

and the component equations of motion are:

Y _ _dp

ou
o —&H p(it-V)u, - o3 (111-43)

Fig. II-1.
A schematic to help visualize the transformation of -
the basic equations to cylindrical coordinates.
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duy Ul

. 19p
Pt t AUV +p;

= — - —,(ll1-44
rao( )

du, N ap
Par YAV, =g . (145)

The term —pu//r contributes the centrifugal effect, while
puu, [t is the Coriolis term.

Notice one aspect of these equations related to
conservation of momentum. If u, =0, then Eq. (I11-43)
becomes

Du, = _0p

? Dt o

Thus

2 Du, e)
s QPR )¢
[ P 9 _[ ar 97
n T

where dr is the element of volume of a cylindrical shell of
length L. Thus

o 5y h
[ poa—tidro=—2er[ rg‘g dr
r

1,0 I

Define the mean radial speed, u,, of the shell contained
between r; and r, by

R0 oo
poudry, = mi,

To
where m is the shell mass. Then

di l'za
e S opr _
md‘ ZnL] [ar qdr
T

1

. rz
= (PAdinsige ~ (PAoutsige * 271L f pdr
I,

where A is the surface area of the inside or outside of the
shell. Thus, the acceleration of the shell is produced by
more than the difference between the external forces:;
even if these vanish, the internal pressure within the cell
causes its radial acceleration. This illustrates that radial
momentum is not necessarily conserved by the pressure
forces. One can show, incidentally, that this quantity is
conserved by the convection terms.

N. The Equations for a Fluid with Nonlocal Forces.
If each element of fluid is subject to forces exerted

by other than its immediate neighboring elements, addi-
tional terms are required in the equations. (Such forces

12

would be present, for example, in a gas with net electric
charge or one acted upon by an external gravitational
field.) The mass equation remains unchanged by such
forces. If the force per unit mass (the acceleration) is g,
then the momentum equation becomes. in Eulerian
coordinates,

. N ¢ >
5t (u-vu = - pVP tg (111-46)

The rate at which work is done by the external force on
the element is £. Thus the energy equation becomes

QE - = - l . > -’u’
3 + @-v)E pv pu) + t-g (111-47)

A combination of these two equations shows that the
changes of energy go directly into kinetic energy, the
internal energy equation being independent of the ex-
ternal force.

0. Thermodynamic Properties.

The first law of thermodynamics relates the heat,
dQ, added to a fluid element to the changes of internal
energy and density as follows

dQ = dlI _:_2 dp (111-48)

For adiabatic flows, Eq. (I11-8) shows that dQ=0. In
addition, the second law of thermodynamics states that
the change in entropy, dS, is related to the temperature,
T, and the heat change by the equation

TdS = dQ (111-49)

For many gases, the internal energy is proportional to the
temperature, with a constant specific heat coefficient, b,
such that

I=bT (111-50)
For such gases,
=hdaT= P dp = 1
dQ =bdT~ % dp = bdT + pd (p) .

Accordingly, we see that b is the specific heat at constant
volume. Furthermore, for a polytropic gas, we can write

1_( - DbT
o p
so that, when the pressure is constant,

dQ=vbdT

and we conclude that yb is the specific heat at constant




pressure. It thus follows that vy can be interpreted as the
ratio of the specific heat at constant pressure to the
specific heat at constant volume. In the nomenclature of
most authors,

y= cp/cv

As once {urther step, we may find an expression for
the entropy of the gas. Eliminating T and I, we obtain

‘Ezgﬂ_?ﬂ’zd(gnﬂ_
b p p pY

which is immcediately integrable to show that

S=S,+b Qn(;%) .

with S, being a constant of integration. Note that for
adiabatic flows, in which p/pY =constant, S does not
change.

It is essential to obscrve that these entropy deriva-
tions all involve Lagrangian derivatives, so that these
conclusions relate to the properties of a particular
clement of fluid. wherever it moves, rather than to fluid
propertics at a fixed point in space. Even for adiabatic
tlows, the value of the entropy may vary from element to
clement and, hence, may vary at any fixed point in space
as the fluid flows by.

For most of our fluid-dynamics investigations, the
entropy concept becomes particularly important when we
attempt to solve the equations by finite-difference numer-
ical techniques. It is then that we encounter the phenom-
enon of numerical instability, a common unphysical
phenomenon in which the velocity and other field
variables “‘spontancously’” develop fluctuations. This
process is equivalent to the destruction of entropy. Thus,
a knowledge of how real fluid processes (such as viscous
cffects and shocks) tend to increasc entropy is of
considerable value in devising means for counteracting the
destructive action of the numerical instability.

For fluids, the concept of entropy can be described
in the following several ways.

(111-51)

I. Entropy measures the amount of smoothing that
has taken place: that is, thc amount of decay from a
structured configuration to a more uniform configuration.

2. Entropy mecasures the .excess amount of heat
generated in a process beyond that which can be
rccovered as work done by adiabatic expansion. For
example, consider an insulated cylinder of gas that is to
be compressed by an insulated piston. Slow compression
heats the gas, while reexpansion to the original pressure
brings it back to its original temperature, and all the
stored cnergy is retricved. Fast compression, however,
produces shock waves that result in excess heating (hence
an increasc in entropy). Reexpansion back to the original
pressure leaves the gas at a higher temperature than
originally present, so that not all input energy has been

retrieved.

3. The above descriptions can be combined. A fluid
with velocity fluctuations (a structured configuration) has
more Kinetic energy than one with a smooth velocity
profile at the same mean value (thus with the same
momentum). This is because kinetic energy is propor-
tional to the square of the velocity.so that the high-
velocity fluctuations carry a greater increase in kinetic
energy than what is lost by.the low-velocity fluctuations.
(For an example with numbers, note that, although the
average of 3 and § is 4, the average of 3% and 5° is greater
than 42.) Because of viscosity, the natural tendency is for
the velocity structure to be smoothed in a manner that
conserves momentum. Accordingly, the kinetic energy
decreases and the internal energy (heat) must increase.
This dissipation into excess heat is thus directly related to
the description in item 2 above.

4. Finally, for completeness, we note that entropy
is created in a shock, as discussed in Chap. VI, but not in
a rarefaction. A shock causes an element of fluid to
change suddenly from an initial state to a compressed
state in a way that completely conserves total energy,
momentum, and mass. The final distribution between
internal and kinetic energies is not determined by the
conservation laws. If, however, we specify that there are
to be no velocity fluctuations behind the shock (a
specification required by the absence of any significant
length or time scale in .the process) then, as we saw
before, the final state contains its maximum possible
entropy, and calculations (presented in Chap. VI) show
this to be greater than the initial entropy.

P. Characteristics.

One of the most powerful methods for examining
the properties of the one-dimensional hydrodynamic
equations is called the method of characteristics. As an
example of its application, -consider the problem of
solving the one-dimensional “Eulerian equations for a
simple gas in adiabatic motion:

ou u_ _ 29
”at“’“ax °ax
(111-52)
% . 9 _ _ du
at T Vx T TP

The sound speed, c, is a function of the density only, so
that we may introduce a new function, o, defined, to .
within an arbitrary constant, by

do = %2 (111-53)
0
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Then Eq. (111-52) becomes

QE + u-a—u + c @ =
ot ox ax
, (111-54)

dg dg du
at ax ox

where ¢ is now considered to be a known function of o.
By summing or differencing these equations, one obtains

Wttt Lo =0, |

| (111-55)
7 @-0+@-9 2@u-0) =0
U0+ (-c)z=(u-0) = 0 .

From the first equation, we can see that along a line in

the x-t plane such that dx/dt = u + ¢, the quantity (u + g)

is a perfect differential and the equation can be inte-

grated. With a similar result from the second equation we
may write '

u+ ¢ = constant, along g—:‘ =utc ,

d (111-56)

u-o = constant, alonga%‘-= u-¢

These are the characteristic solutions, and the families of
lines. dx/dt = ut ¢ are called the characteristic lines, or
simply, the characteristics.

These characteristic solutions are not, in general,
complete; they do not necessarily allow the features of
any applicable flow field to be determined directly. They
are, however, extremely powerful aids in obtaining
solutions in certain special cases, or in cases where parts
of the solution can be obtained by other means. As an
example of the use of the characteristic solutions,
consider the problem of determining the effect on a gas,
initially at rest, of a piston being withdrawn from it (see
Fig. HI-2). Up to t = 0, there is a piston at x = 0, and gas
at rest for x > 0. At t = 0, the piston commences to move
with: uniform veldcity, u,, in the negative x-direction, and
a sound signal proceeds into the gas. We now attempt to
connect the sound signal and piston-path lines with a
family of characteristic lines. The line dx/dt=u+c is of
Ro use, since u=0 along the sound signal, and that
characteristic lies along the signal line. The line dx/dt =
u=c, on the other hand, has negative slope at the sound
signal line and, hence, intersects it. Furthermore, this
characteristic has negative slope throughout the flow field
between the sound signal and the piston path, because
u<0 and ¢ >0. Also, the slope is more negative than
that of the piston path, assuming that ¢ %0 anywhere
within the flow field of interest, so that each character-
istic dx/dt = u~c will also intersect the piston path. Thus

U= 0, = U, =0

P 7p
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or, since u, =0,

0p =up + 0, (111-57)

For a polytropic gas, for example, 0 = 2¢c/(y—1), so that

Cp = % u, ¢
Since u;, <0, the sound speed is less than C, at the
piston; ?he more negative the piston speed, the smaller
would be the sound speed there. This fact makes plausible
the assumption that ¢ #0 in the flow field, with the
exception being the case in which ¢, = 0. If the piston is
withdrawn any faster than the critical speed at which
C, =0, then the gas cannot follow; a vacuum occurs
between the escaping gas front and the piston. This
critical piston speed--called the escape speed of the gas-—is

2o
T =1
Note that ¢, is independent of time, simply because u
and ¢, are independent of time. This is because it does
not matter where the two intersection points are along
the sound-signal and piston paths.

The method of solution is also valid if u, varies
with time, as long as a shock does not interfere with the
characteristic line. If, however, the piston velocity persists
for sufficient time at values less negative than any which
it has previously attained, then a shock is quite likely to
form. v

An interesting generalization of this problem can
also be solved by the method of characteristics. Suppose
that the piston is replaced by a wall which has mass per

(111-58)
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Fig. 111-2,
Characteristics in the x-t plane in the withdrawn
piston problem,.




unit area m. Up to t =0, the wall is held fixed at x =0;it
is then relecased and moves away because of the gas
pressure exerted on it. What is the history of its motion?
Let subscript w refer to conditions at the movable wall.
Then
du,,
mGe T P

The characteristic equation, Eq. (I11-57), is again appli-
cable: in terms of sound speed,
2
y-1 (cw - co)

uW =

Now, -1

Pw) 27
C“. CO B;

s0 that we now have three equations for determination of
the three unknowns, Uy, Py, and c,,. One constant of
integration is to be determined in the solution; for this we
specify that uy, = 0at t = 0. Then the solution, after some
manipulation, is found to be

1
w2 | (5
w .y_l - s
()
- - 1
Pw = Po = T .
_ .’Y;')
Cw = Cu = \7*1
where
=14+ 1+_l) (@i‘)
2y m

Thus as t ~ o, u, approaches the gas escape speed; the
wall mass affects only the rate at which the final speed is
approached. :

Q. The Bernoulli Function.

Characteristic theory asserts the constancy of cer-
tain quantitics along the characteristic (sound-signal) lincs
in problems involving one space dimension and time. The
theory can be gencralized to problems in two or threc
space dimensions, but the details are not presented here.

A similar constant of motion exists whose signifi-
cance, however, is best seen in fully three-dimensional
problems. To reveal this, we need to specialize to steady
flow. in which the Eulerian time derivatives vanish. Then
Lgs. (111-16) and (111-18) can be combined to show that

u-V(E+p/p)=0

The interpretation of this result for steady flows is that

along any streamline (a line everywhere parallel to o ) the
value of E + p/p is constant. Recalling the definition of E,
we can define the constant Bernoulli function B such that

B=%i-3+1+p/p (111-59)
In general, the value of B will vary among streamlines; in
special cases it may have the same value everywhere in the
flow.

We state without proof (see Courant and Friedrichs,
p- 300) the important fact that the Bernoulli law holds,
even if the streamline passes through a shock, as long as
the flow is steady. Those authors also show a variation of
the Bernoulli law that holds for nonsteady flows.

An example of the application of this result is to
the determination of stagnation properties at the blunt tip
of an object in the supersonic flow of a cold polytropic
gas. For such a gas,

B=Li-li+ql

Thus, if the far-upstream flow speed is u,, then B = u/2,
since, in the input flow, I = 0. At the stagnation point, the
flow speed is zero, so that the value of I at that point is
given by

1

IS = 5; ug
Indeed, this is the maximum value that I can achieve in
the flow. If the specific heat of the gas is known, then the
maximum surface temperature can be computed.

Many other uses can be found for the Bernoulli law,
some of which will become apparent in succeeding
discussions.

R. Simple Waves.

Suppose that in some region of the x-t plane (sce
Fig. 111-3) the flow field is in a constant state: u=u,,,
0= 0, everywhere within the region. The constant-state
region can be bounded above and/or beiow by regions in
which the flow field is not constant. The boundary lines
will either be shocks, or they will be straight character-.
istics. If they arc not shocks, the boundaries of the
nonconstant regions (the disturbance boundaries) will
propagate into the constant-state region with sound speed
relative to the material and, thus will have slopc u, ¢,
being, therefore, straight characteristics. _

The most important fact, now to be cstablished is
that the flow in the adjacent regions will always be of a
particularly simple form. Consider first the lower non-
constant region. Through it will pass the family of
characteristics dx/dt = u~c, which, at the disturbance -
boundary, have slope u,~c,, and hence intersect it as
long as ¢, # 0. Along each of these characteristics u—o is
constant; indeed, u~o will be the same constant for all
members of the family of characteristics which intersect
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NONCONSTANT REGION

/dx /dt = uo -co

X| CONSTANT-STATE
REGION '

NONCONSTANT
REGION

Ndx/dt=u.+¢

o 0

t

Fig. 11I-3.
Characteristics in the x-t plane for a region con-
taining constant and nonconstant regions.

the disturbance boundary, since along that boundary the
constant is u,—o,,. Thus, throughout the region adjacent
to the region of constant state, u—-o will be one fixed
constant. Likewise, one can prove that, throughout the
nonconstant region above the region of constant state,
u+o wil be one fixed constant. Any region in which
u+ 0 or u-o is a fixed constant throughout is referred to
as the region of a “simple wave.” The extent of the region
of a simple wave adjacent to a region of constant state is
limited by the requirement of contact with the disturb-
ance line through a characteristic.

In the case that ¢, = 0, no infinitesimal disturbance
can propagate into the constant-state region; any wave
propagating into the region must, therefore, have finite
amplitude at its front. Such 2 discontinuous disturbance is
a shock and requires separate treatment.

Consider now the example of a simple wave propa-
gating in the positive x-direction into a constant-state
region in which u, = 0. Then

U=0 =~g,
and the two expressions of Eq. (111-54) become the same,
do 30
5% t(e-o, +c)-5;=
which has the general solution
0=F[x=(0~0, +o)t]
or :
o=F[x-(u+o)t] ,

(111-60)
u=g~o, ,
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where F is an arbitrary function of its argument,

As an example of the use of this solution, consider
the problem of determining the motion of a polytropic
gas disturbed by a piston. It is assumed that uptot=0
the piston is at rest, so that a semi-infinite region of
constant state, with u=0, g= 0Oy, has been established.
Subsequent to t=0, the piston moves with prescribed
velocity u(t) to positions x(t) (such that v = dx/dt). For a
polytropic gas, 0 = 2¢/(y-1), so that Eq. (I11-60) can be
written as

2c
o _ _ y+1
7_l+u-—F[ (c0+ 3 u)t]

3

or
2 _ply—xr1 [ % , (111-61)
7-1 Y=1 \*"yF7 /!
and
2
u=7_l(c-co) . J

Thus, the function F is to be determined by substituting
into Eq. (I1I-61) the known conditions at the piston

200 .
7_1--F(—cot) t<0o

(111-62)
2co 7+ 1
7_1+v=Fx—(co+ 3 v)t‘ t>0 >

and F(0) lies between 2¢,/(y~1) and 2co/(~y~l) + .

1. Example I. The problem of withdrawal of the
piston at constant speed was partially solved carlier [Egs.
(I11-57), (111-58)] . Here we may solve it completely. (The
same problem is solved more easily in Chap. V. We use
this method here for illustration, because of its power for
more complicated problems which cannot be treated by
the procedure of Chap. V.) In this case, v is a constant
(v<0) and x = vt. From Eq. (111-62)

200

F(E)=7_! E>0 !
co

FO=-"F+v g<o |

where & is any argument of F.

This solution, put into Eq. (111-61), becomes

2 _ 200 '
-1 -1
2c
+
forx—L,y_: (c—7+°])t>0
2 _ % (111-63)
Y-1 -1
~axl o 2
for x Y=1 (L m>t<0 J




or

C=¢, forx>cot , ‘
. . 111-64
2“'-2L°+vf x<(‘c+'—7—+—1—vt( )
vy or o 5 .

The first statement says that the signal propagates with
sound speed. The second one states that, between the
piston and the path givenh by x = {co + [(y + 1)/2] v} t, the
sound speed is a constant, and the result is identical to
that in Eq. (111-57) for conditions at the piston. (Note
that, if v=—[2c,/(y—1)], which is the escape speed, then
the thickness of the constant-state zone next to the piston
is zero, since both boundaries move with piston speed.)
Finally, in addition to Eq. (I11-63) we have

2¢q +u<2c < 2¢9 forx—'y+1 —-2-50- t=0
-1 -1 -1 v—1 yt1

or

\
-1 [2¢

L1l (2% X
y+1l\y—1 t

and, from Eq. (11l-61),

forc, +7—2+-l- v<%< o

2 [x

=t (X (111-65)
RRE7TYE CO)

2. Example II. From Eq. (I11-61) may be calculated
the instantaneous slope of the function c(x,t):

.
('y—l)F'x—?;—-':—i-(c——CS-—)t]

oc _ » (I11-66)
ax ’ ‘Z+] 2cO (
2+(7”)tFx—7—1(°7+1 t]

where F' means the derivative of F with respect to its
argument. Thus, if F(x) has negative slope at any time,
the denominator may eventually vanish, and the result is a
shock.

As a specific example, consider the problem of
determining the effect of a uniformly accelerating piston
moving into the gas. In this, with acceleration a,

v=at |
x=%at® |,

and Eq. (11I-62) becomes

2c,
F(S)—‘y"l £>0 .
: : (111-67)
.1_ 2 . +l'~ _ 200
F[zat —(c0+7—2-—:1t)t]-—7_1+at t>0.

We set the argument of F equal to £ in the second
equation of Eq. (111-67) and solve for t:

t=—52.+L ‘2_ =
7t ¢, ~ 21

where the sign has been chosen such tathat t =0 when
£=0. Thus

F(E)i,&tll) < +% "cg —2nf (<0

(111-68)

2c

0

¥y-—1

F(®) = £>0

Combining this result with Eq. (I11-61), we obtain
2¢ ¥+ 1 1 )

y=1T 2y=-1) %%ty

2c
2 _ Syt o
\/co 27yalx 7_1(0 7+l)t],x<cot

2c

- 0
—7_1’ x>cot. j

{lll-69)

(The condition x < c,t in the first equation follows from
the condition x~—(y+ 1)/(7—]){c—[200/(7 + l)]} t<O.
This can be verified by noting that at the point x = cot,
€ =C,, in the solution that follows.) The equations (111-69)
can be solved for c:

‘=1L’fl( -1 ) y-1 )
c 2 c, 3 atj+ 7y
2
c§+(‘y-l)acot—2'yax+(7;l) a%?,
(111-70)
: x <ct ’
c=cys x>cot J

(As a check on this solution, it may be noted that at the
piston, where x = %at* | Eq. (II-70) gives
2¢/(y=1) = 2c,/(y—1) + at, being the result obtained
previously--see Eq. (I11-57). which is perfect” . 'id for a
piston speed varying with time.)

The envelope in the x-t plane, of values such that
the square root vanishes in Eq. (I1I-70), is a path of
particular interest. Along it, dc/0x is infinite so that the
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path defines a shock, whose position x(t) is given by
1 +1\?
x (1) = T [cg t(r-1acyt+ (12——) a2t2] (U1-71)

This is valid, however, only for Xs Scot, or for t >
2c, /(v + 1)a. Hence a shock forms at time and position

2 2c(2)
t, = G+Da' X° G+ Da (111-72) ‘

and proceeds initially with speed c,,. The solution cannot,
however, be believed after the initial formation of the
shock, since thereafter the flow pattern is no longer that
of a simple wave.

S. Inversion of the Equations.

Even for a simple, isentropic gas, the hydrodynamic
equations are difficult to handle in complete generality.
The complications arise mainly from nonlinearity of the
equations. One means of circumventing the difficulty is
by the method discussed in this chapter (sometimes called
the speedgraph method). The hodograph transformation
for steady flow is part of a very similar method.

We start with Eqgs. (111-54); again the gas is assumed
to be simple and the motions adiabatic

du_ du_ dg_

at T U Teax =0

(111-73)
8_o+ do c ou
ot ox ox

To remove the nonlinearity, these are transformed to a set
of equations in which the dependent variables are x and t
and the independent variables are u and ¢. The resulting
equations are then linear and homogeneous and are thus
amenable to treatment by more familiar methods.

We introduce the shorthand notation x,
=(9%/80)y=constant etc., in which partial derivatives of x
or t with respect to u or o are taken with consideration of
X and t being functions of u and 0, and vice versa. For
example:

dx =x,do + x,du
so that, with t held constant,

| = Xg0x + X, u,

I8

or with x held constant,
0=x,0, +x,u,

Two more independent relations of this kind can be
derived; we write them in the form

0=x,0, +t,0, ,
0=ugt, +u,x,

These four relations can be solved for derivatives of u and
o:

(111-74)

where
Det=x, t,—x,t, . (111-75)
Validity of the transformation requires Det 5 0.

With these transformation €quations, the Egs.
(I11-73) become

& _ o at

90 9o du ’ (11176)
ot at

du ou do

Since c is a function of o only, these equations are
linear and homogeneous in their dependent variables.
From these two equations, x can be climinated:

9%t 3%t 1 dc .| ot
— T L 1+—= )=
2 ( )80

du® 3¢ c do (11-77)

A similar equation for x can also be obtained, but it is not
as concise. The amount of difficulty involved in solving
Eq. (III-77) depends upon the nature of the function
(1/e)[1 + (dc/do)], which, in turn, depends upon the
form of the equation of state. For a polytropic gas, for
example,

%t 9%t ('y+l>1§_t_

gl 2 HI-78
du?  9g2 Y=1/0 do (1-78)




Even simpler is the equation resulting from the equation
of state

p=a- g : (111-79)

where a and § are constants. (Such an equation of state
may be useful if a very small range of densities is involved;
then Eq. (11I-79) may fit the true equation of state
sufficiently well over the range of interest.) The form of
Eq. (111-77) with the Eq. (I11-79) is

%t 3%t _
ou?  30° o

the simple wave equation, which has the general solution
t=0(u+o0)+(u-o) ,

where €, and ¢, are arbitrary functions of their argu-
ments (arbitrary, that is, except for the restrictions
imposed by continuity and nonvanishing of the trans-
formation determinant). The corresponding solution for x
is

= [ -0 g+ GRS TAC

where K and the lower limits of the integrations are
arbitrary constants. With this solution Eq. (111-75) be-
comes

Det=~4c Q’[ Q’z ’

which must not vanish if the transformation is to be valid.
Returning to Eq. (111-78), we make the substitution

_2n+1

Y 2n -1

Then, for integer n > 0, the most general solution is

t=<1 _a_> [at29)

ou 9o o" (111-80)
+(i___a)n-l [_L ““’)] .
du 9o on v

where €, and ¥, are arbitrary functions of their argu-
ments. The special cases of a monatomic gas
(r=5/3.n=2) and a diatomic gas (y=7/3, n=3) are
covered by this solution. The fictitious case, Y=3(n=1),
has a particularly simple solution

(=1 [0 (uta)+ 8 (u-0)] (m-81)

In this special case, ¢ = o.

The solution for x follows from Egs. (I11-75) and
(I11-76), either directly or through the following trans-
formation: '

y =EX—ut,
z= ot

Then, for a polytropic gas,

oy _ y—1dz

do 2 ou

0y _ y—10z  z/y-3
7 30 el a)

For y = 3, these become particularly simple, and the
solution is Eq. (11I-81) together with ’

Y= (ut0)+9 (u-o)
or

X=ut—2,(u+0) + 2 (u—o) (111-82)
A useful form of these general solutions, which follows
directly from Egs. (111-81) and (111-82), is ‘

utg=F[x—(u+o)t],
u—0 = G[x—(u—o)t] .

(111-83)
© (111-84)

Here F and G are arbitrary functions of their arguments.
(It should be noted that Eqs. (111-83) and (111-84) can be
derived simply and directly from the original equations as
a direct consequence of the fact that for Y=3,0and ¢ are
identically equal. For y = 3 the one-dimensional Eulerian
cquations are '

du, du_ 30 20

L 90 _ ou
a  "oax %%3x ’ ot

UT—=—g— or
ox ox

a*?(uio)'k(uta)% (uxo) =0

The general solution of this pair is seen to be u
t 0=Fi[x—(u £ 0)t]. A directly analogous derivation for
any other value of v is not possible.)

Example: Expansion into a Vacuum

Initially the gas is at rest: for x <0, there is
vacuum, for x >0 there is gas. The value of v is 3.0.
Define

0 x<0
H(x) =
1 x>0

}
O0<HX)<I

(111-85)

X =0




and let a be a fixed constant. Then, at t = 0,

o= a H(x)

(11-86)

u=a[H(x)-1]

The form of u follows from the fact that the motion is
that of a simple wave in which u—g has everywhere the
same value. Combining with Egs. (I11-83) and (111-84), we
get :

u+o=af2H[x-(u+ o)) - 1},

u-o =-gq ,
or
uto>+ foruto=—a
X
u+o<-t— foruto=gq ,
X
U+°=T for~a<uto<a ,
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which seems a strange way to express the solition, but
this can be transformed to the equivalent, more familiar
form -

a=%(%{-+a)

for the region of the rarefaction wave. In particular, at
x/t=—a,u=—aq, the “‘escape speed,”

It is also strange that the final solution depends
upon the nature of the velocity profile in the vacuum in
Eq. (I11-86). Had we taken u=0 at t = 0, the final result
would have been meaningless.

Considerable additional discussion of this method
has been given by von Mises, by Courant and Friedrichs,
and by Landau and Lifshitz.




IV. Fluid Dynamics from the Molecular Viewpoint

A. Derivations.

Derivations of the fluid dynamics equations often
follow the procedure discussed in the preceding chapters.
These are far from satisfactory, however, because they are
not rigorous and because they obscure the physical origin
and meaning of such fluid properties as pressure, vis-
cosity, and heat conduction.

A complete treatment from the molecular view-
point is extremely complicated, but a simplified version
can overcome most objections to the usual derivation
techniques. Such a treatment is given here, hopefully to
afford insight into the properties of simple fluids and into
the fascinating dynamical contortions they can go
through.

The first steps in the derivation always seem to be
the most difficult - they are the accurate definition of the
“molecular distribution function” and the derivation of
its transport equation. The difficulty lies in the fact that
the transport equation looks too simple to be the
complete basis for all that follows, and we must resist the
temptation to put into it terms and factors that do not
belong.

The distribution function, N, is a function of
position, velocity, and time, all .considered to be com-
pletely independent variables. For the purpose of describ-
ing the behavior of this function, it is useful to introduce
index nomenclature, and to discuss briefly the rules of
manipulations that are required for our purposes. We label
the three coordinate directions X, Y, and z, by numbers 1,
2,and 3:

X=X, N
YyEx; .
Z=X; . '

The components of velocity in these three directions are
up, uz,and u;, respectively. In general, X; and u; can have
subscript j equal to 1, 2, or 3. We shall sometimes use i or
k as subscripts and, again, the same range of possible
numbers is implied. Whenever the same subscript appears
twice in any term, it is implied that that term is summed
over all possible values of the subscript (the summation
convention). Examples are

ujiju,x, tuzXx; +uyx;y

an au, all2 bu3
=S Uyt Uy —— t 4 —
axy Oxy Xy Xy

duy duy Ouy duy
Y Suy——tuy=——tyy—
an X, X, 0X3 ‘

u;?

P =uy? +uy? +uy?

These repeated subscripts are called dummy subscripts.
They can be changed arbitrarily without altering the
meaning of a term, for example,

aui _ auj
U} e = Uj ——
Bxk 8xk

Any subscript that appears only once in a term must also
occur in every other term of the equation. For example:
a2y

auj auj oy 0 uj

——t Uy S e + V)

at axk axj axiz
In this example, which is the momentum equation for a
viscous, incompressible fluid, the nondummy subscript j
appears in every term; but k and i, which are dummy

. subscripts, imply summation for each of their terms and

do not have to appear consistently throughout. A term
with no nondummy subscripts is a scalar; with one
nondummy subscript it is a vector. The presence of two
or more nondummy subscripts identifies a tensor of
second or higher order. In any equation, all terms must be
of the same type, a corollary of the requirement that the
same nondummy subscripts must appear in all terms.

The special simplified version of molecular dynam-
ics that we develop is that of a set of molecules which
have interactions so weak as to contribute negligible
mean-flow forces, and which have no internal degrees of
freedom that can absorb energy. Then the only energy a

molecule can possess is its kinetic energy of motion:

mK=‘/£muj2 , (Iv-1)

where K is the kinetic energy per unit mass of the
molecule with mass m.

We now define the distribution function in such a
way that '

N(xj's, u/'s,t) dry d7,

is the probable total number of molecules at time t in the
spatial volume dr, = dx, dx,dx;, in the velocity interval
dr, =du, du,du;, at position X, x,, X3, and with
velocity uy, u,, u;. Nis a function of all these variables,
and it must be emphasized that all of them can be
independently specified. That is, given an arbitrary
specification of position, velocity, and time, the distribu-
tion function gives the probable total number of mole-
cules with those properties, per unit spatial volume, per
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unit velocity interval.

The distribution function is not as familiar a
quantity as the density or local mean velocity, but these
latter ficld variables, and others, can be determined from
the distribution function. For example,

00 ~ 00 o0
p‘=‘mdeTuE [f deu,duzdu;, . (1V2)
~007~00 V- 00 '

This shows that density of thc gas is determined by
summing the probable number over all possible velocities
that molecules can have. This gives the probable total
number of molecules per unit spatial volume, regardless of
their velocities, and multiplication by the mass per
molecule gives the density.

To define the average velocity, we require that its
product with the total mass per unit volume (the mean
momentum) be equal to the true momentum of the
molecules. Accordingly,

pU; = mfujN dr, , (1v-3)

and U; is what we have been calling the “fluid velocity” in
preceéing sections. (Remember that, whereas u; is an
independent variable, U; is now a function of t and the
xj’s.) In gencral, we define, for any function Q(uj's), the
mean value:

pQ=m f QN dr,, . (1v-4)

Having thus established the definition of N and
having seen some of its properties, we now proceed to
find its equation of variation. This equation simply states
that the rate of change of probable number of particles in
any volume is given by the convective flux around the
edges. In Chap. 11 we saw that this means

N oN
'ét—+uj5;j'~0 E (IV-5)

This, then, is our required equation, and from it can be
derived all the features that we plan to exhibit. (If the
particles have appreciable interaction with each other or
with an external force field, this equation requires
modifications that grcatly complicate the subsequent
analysis.) .
Multiplying Eq. (IV-5) by Q(uj’s), some unspecified
function of the uj’s, and integrating over 7, yields

20,2 bam=0 . (IV-6)
ot 9x; )

J

Suppose, now. that Q = 1. Then Eq. (1V-6) states that

dp Opil;
-+ =0 , . (Iv-7)
ot aXJ '

22

which is precisely the conservation of mass cquation of

Chap. II [see Eq. (1I-2)], for which we now have,
however, a precise definition of the fluid velocity.
If Q =y, then

W%, 2 ) - V-8
+—-—(puiuj)—0 , (1v-8)
ot ox,

1

whereas if Q = u;?, then

%u; f T =0 (1IV-9)
at axj L)

[N

Equations (1V-8) and (1V-9) are the momentum and
energy equations, sut to convert them to more familiar
form requires additional manipulation. It is at this stage
that the meanings of pressure, heat energy, and viscosity
become much more clearly defined.

Consider first the momentum equation. The quan-
tity pU;UI; represents a flux of momentum that can be
divided into two parts. To see this, it is useful to define
the fluctuating part of the velocity by the equation

]

U =T, +uj' . (1V-10)
The average of this cquation reduces to an identity,
provided that = 0. This, of course, is what is meant by
the fluctuating part;, it is the amount by which the
velocity deviates from the mean velocity, so that its mean
should vanish. ‘

Thus, the flux of momentum can be written

PUY; = pu; +up) (U +uf)

Y Ter -y U]
= p(uiuj M RURAUTURR U

The middle terms must vanish, because, for example,

S
Ui u; EU{ Uj =0 ,
so that

il

— g Tt
U J=p(uiu.j+ui uj) .

It is now convenient to introduce the standard abbrevia-
tion
pU Z—p Ui’llj' . (lV-l l)

Then the momentum cquation becomes

u;

) 9 - ;
T +5g(puiuj—~pjj) =0 (1V-12)

Now the form is beginning to resemblec that of Eq. (11-3);
but, instead of a simple scalar pressure, p, we have a




generalized stress tensor, Pij-

The cnergy equation, Eq. (IV-9), can be treated
similarly. First, we observe that %pu? must represent all
the energy per unit volume of the molecules, both the
kinetic encrgy of mean motion, pK, and the heat energy
from the fluctuating motion,:pl. That is,

R 1
pE = Ypu;

wherc E is the total energy per unit mass. As before, we
can break this into two parts, obtaining

E=% (@) + ()] (v-13)
It follows from Eq. (11-5) that

K=1%(W)’
and

1=%(y) (1v-14)
and atso, from Eq. (IV-11), that

pi =20l . (IV-15)

The second term in Eq. (IV-9) contains the energy
flux, pu} u;, which can be expanded, using Eq. (IV-10), as
follows

2 - ’ 2
P uj u; = p(T; +uj)ui s

- ar 2 "2
—pujui+pujui ,

= 2G;0E +p y; T+ y)? o,

—2upE+2pu ul u tpy u, ] s

= 2ﬁ]pE-2ﬁiplj +p ui'ui'Uj'

Thus, the energy equation becomes

E, 0

ot ax; [puE puu+/zpuu ] 0

(1V-16)

which now begins to show a close resemblance to Eq.
(11-4).

To proceed, we must look in more detail at the
stress tensor Pij-
rigorous molccular dynamics studies arises when one
attempts to derive a relationship between pjj and the
mean-tlow quantities. For this reason, we sha]l appeal
instcad to some physical reasoning, and find that this
lcads to a plausible justification for the form that is used
in the Navier-Stokes equations.

The stress tensor is supposed to indicate the nature
of the torces that act in the fluid from the fluctuating
part of the molecular motions. It must represent both the
scalar pressure cffects and the viscous shear effects. To see

One of the most complicated parts of .

the physical basis for these two types of effects, consider
a surface buried in the fluid that moves with the mean
motion of the fluid. Because of the velocity fluctuations,
there actually are molecules passing through this surface,
the same number per unit time going both ways. If there
are gradients within the fluid, however, therc will be a nct
amount of momentum and energy crossing the surface.
The momentum flux will have both a normal component
(the scalar pressure effect) and a tangential component
(the viscous shear effect).

For example, suppose that the surface is horizontal
and that the mean motion above it is zero, while the mean
motion below it is rightwards. We thus have a shear layer
at the surface, and viscous “forces” are expected to
“drag” the upper fluid to the right. What actually
happens, we now can see, is that rightward moving
molecules diffuse across the surface from the lower to the
upper regions, while molecules with zero net motion
diffuse into the lower region. As a result the mean
rightward motion of the molecules above the surface
gradually increases, while that of the molecules below the
surface decreases. This, then, shows us the true basis for
the viscous drag at shear layers in gases. The process is
actually a diffusion of momentum.

These arguments, therefore, lead us to a means of
expressing the stress tensor. Just as experiments show the
heat diffusion flux to be proportional to the temperature
gradient, so also the momentum diffusion flux is propor-
tional to the gradient of velocity:

P o
]

Actually, we must be careful to take into consideration all
second-order tensors related to the velocity gradients and
we must make sure that the final expression for p;; is
independent of an cxchange of the subscripts. (This last
requirement comes from the definition of p;;, Eq.
(1V-11), which is the same if i and j arc mtcrchangcd)
Thus, we must express the velocity gradicnts in terms of
the symmetric rate-of-strain tensor:

eij —‘a‘;"”a—xi . (lV-l7)

To be complete and to include the scalar pressure cffects,
we also need to introduce another second-order tensor,
the Kronecker delta tensor, ‘5ij~ This entity is defined as

ifi=j |
if i% j

Note, for example, the following identities using this
tensor and the summation convention:

>
il
[
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8;i=3

Combining these tensors, and expressing the result in
conventional notation, we write

p" ——p8 +% A ekkﬁ +[Jeij (IV'18)
This, then, is the most general linear, symmetric relation-
ship for the stress tensor that can be written among the
available tensors. (Note that we have omitted from this
expression for p;; several other possible tensors, but each
of them can be shown to not contribute. Although T, u]
for example, is a good, symmetric, second-order tensor,
we exclude it because its value is different if we look at
the fluid from a uniformly translating coordinate system,
giving a physically impossible type of force.)

The scalar functions of proportionality, u and A,
have been called the first and second coefficients of
viscosity, respectively. (Some authors call 2u + 3\ the
second coefficient of viscosity.)

We note that, if there is no shear, so that e; =0,
then p;; =—p6, Insertion of this into Eq. (IV- 12) gives
our previous nonviscous momentum equation, showing
that p must still continue to be interpreted as the scalar
(equation-of-state) pressure.

We now are prepared to draw two very important
conclusions. Insertion of Eq. (IV-18) into Eq. (IV-15)
shows us that

201 = 3p—ey (u+ 3N) . (IV-19)
Physical reasoning shows that it is nonsense to associate
heat energy with the size of the velocity gradients, so that
our first conclusion is 2u + 3\ = 0, a condition that must
be satisfied for our gas with no internal degrees of
freedom. (This conclusion, called the Stokes assumption,
would not hold if the gas were more complicated; in some
circumstances 2u + 3 can be large and important.)

The second conclusion is that

=2
P=3 ol .

We have, therefore, derived the equation of state for this
gas and shown that it is our simple gas of Eq. (1I-6), with
¥ = 5/3. As stated following Eq. (11-6), such noble gases as
helium and neon are well represented by this equation of
state, indicating that they must closely satisfy the
restrictions that we assumed in this molecular-viewpoint
derivation. s
We may observe that, except for the term % p uju
in Eq. (IV-16), the equations we have denved are
complete. Not counting that term, there are exactly as
many unknown field variables as there are equations. In
summary, the equations are

ap 8pu
5{"3; 0
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apﬁi .
ERET e

apE Nt
o1 +5——-(puE p;l; *+ % pujuju) = 0

pij E—pSij + % A ekk 611 + ueij

E =-—:K+Iz%'ﬁj’+l

TS

ol

Ww

7\ 0

(Actually, the theory has predicted nothing about u, but
is capable of doing so if the intermolecular forces are
included in the theory. For the present purpose, we
assume that u, which is a material preperty, is known
from experimental investigations.)

To fully complete the set of equations, we observe
that % pujuu; is a flux of energy resulting from the
molecular fluctuations. This, then, can be identified as the
heat conduction term, and, under a wide range of
circumstances, it is appropriate to put

Yo u'u' r=—r AL ,

an

in which 7 is a scalar coefficient of heat conduction and T
is the temperature, and to use the observed fact that
I=¢,T, in which ¢, is the experimentally determined
specific heat.

Thus, our simplified theory has given insight into a
number of properties of the materials and the equations
of fluid dynamics. It has left some questions still to be
resolved, such as how the scalar coefficients, u, A, 7, and
¢, can be introduced with greater rigor and how their
values can be predicted for circumstances of interest. To
answer these questions, however, the theory becomes
vastly more complicated and is best left as at extensive
course of study.

Another topic that lies within the scope of this
chapter concerns the behavior of gases more complicated
than the monatomic noble gases. A molecule that has
more than one atom (such as a molecule of HC1) can
possess internal energy. This is in addition to the kinetic
energy of mean translation and the heat energy of the
fluctuating motions. A molecule with two atoms, for
example, can have energy of rotation and of vibration. We
now invoke a law of statistical mechanics which states
that all possible energy-carrying modes will, in equilib-
rium, have the same energy. Suppose a molecule has n'
modes of internal energy. It also has three modes of
fluctuational energy (one for the motion in each of three




directions of three-dimensional space). Letn=n'+3. We
have seen that equation-of-state pressure arises from the
translational modes, and that

P=§Ph ’

where the subscript, t, refers to the translational heat
energy. We now let

I=1+1
where 1’ is the energy held by the internal modes, so that
Lis the total internal energy per unit mass. Now, from the

statistical mechanics law,

=31

and

y =02 (1V-20)

This result enables us to find v if we know the total
number of energy-carrying modes for the molecule.

For a noble gas with no internal degrees of freedom,
n=3and y=5/3,

For a diatomic gas, there are three translational and
two rotational modes. At ordinary temperatures, the
vibrational mode is inactive, so that n=5 and
Y=17/5=1.4. At high temperatures, the vibrational mode
becomes important, so that n = 6 and v=8/6=1.33.

The more complicated the molecule, the greater is
n, and y - 1. (Sulfur hexafluoride, for example, has
Y~ 1.08.) Thus, for all gases under ordinary circum-
stances, 1.0 <y < 5/3. It js, however, a curious fact that
the gases formed from the detonation of an explosive
behave for a short time as though v ~ 3.0.

When the distribution of energy among the various
degrees of freedom is not instantaneous, then the effec-
tive value of vy can be time-dependent. In strongly
nonequilibrium flows, this introduces an additional differ-
ential equation that describes the continual trend to
equilibrium, as modified by the disturbing effects of the
rapidly changing flow field. For small departures from
equilibrium, however, the equation can be approximated
in a manner that clarifies considerably the meaning of
second viscosity and, in particular, predicts a value for the
coefficient 2u + 3\. This coefficient is zero for molecules
that relax instantaneously to equilibrium in energy
distribution among the translational and internal modes.

To derive this result, we observe that it still is L

correct to write

=2
p=%pl,
and 3
I=[+1

We introduce e, and e', which are the specific internal
energies per degree of freedom, in the translational and
internal modes, respectively. For instantaneous equilib-
rium, we put e, =¢’, but this assumption is not valid if the
internal modes cannot immediately follow the variations
of the translational modes. Instead, we postulate a
relaxation process, whereby the rate of change of e’ is
proportional to the difference between e’ and ;. With a
as a relaxation-time parameter, we put
U
ag—f =(e;~¢)

Vith I, =3¢, I'=(n~3)¢), and y= (n+2)/n (as before),
we can combine these equations to obtain, for the
pressure

’
p=(r-Dpl+2af=d)pde gy,

showing an additional term beyond what we previously
derived, which depends on the rate of change of the local
fluid variables. Note that this added term vanishes if n = 3
(no internal degrees of freedom) orifa=0 (infinitely fast
relaxation rate) or if de’/dt = 0 (steady-state conditions).
The significance of this term in the pressure is that it
represents the correction to the first term, which gives the
magnitude of the pressure as if the internal degrees were
able to follow completely the equipartition-of-energy law.

To see the relationship of this result to the second
coefficient of viscosity, we note that

T de’

I=ne +3qa rTE ,
which can be derived through appropriate combination of
the above equations. For a small, we seek a power series
(in a) solution of this equation for ¢’, with the result that

¢=Li3edl, o)

Thus, to first order in a,

di

p=(v—1)pl+2ap("—;r3 d

Now also we have seen that, negiecting viscosity, we can

write the fluid-dynamics energy equation in the form

dl _ du;
Pat =~ Popy, ’

where p_ = (y - 1) pl. Thus
-3
P=(y-1)pl-a (En_z)Poekk
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This is to be compared with the contraction of Eq.
(IV-18), which shows that

P=Po~ ¥(A+ %u) Ckk

Thus we identify

2 n-—3)
M3u=2ap, g

(Iv-22)
This serves to demonstrate, when the relaxation rate is
fast (a = 0), that the second viscosity is, indeed, related
in point-function fashion to the rate at which trans-
lational energy is converted to the internal degrees of
freedom.

To complete the discussion, we note that a can be
cstimated, in some cases, by the intermolecular collision
rate. If d is the molecular-collision mean free path
(estimated by the ratio of molecular cross-sectional area
to the number density of molecules) and if ¥ is the mean
fluctuation speed (comparable in value to the sound speed
in the gas), ther a = d/v. Thus, especially in regions of
low molecular density where a is accordingly large, we
can expect to find occasions in which these relaxation-
rate processes contribute significantly to the fluid
dynamics.

B. Summary of Equations.

For reference it is useful to summarize the full
equations with viscosity and also to write them out for
several special cases.

In component form, dropping bars from mean-flow
quantities,

dp  dpy;
TR (Iv-23)
apui 0
B0 Tax PUTPY B (1V-24)
30E . @, oT
Tt 3 (PuE—pyu—T ;EF PUE ,  (IV-25)
'}
Pij =P8 + Y heyydy; ey (IV-26)
E=%ul+1 (1IV-27)
aui aUJ
% T 3x, T ax, (IV-28)

) i
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The scalar pressure, p, is assumed to be a function of p
and 1, whereas the temperature, T, is related to I through
the specific heat, so that [=CyT. In many cases, Cy is
adequately treated as a constant, but in general it could
also be a function of p and I. Likewise, A and u could vary
independently as functions of p and I; for many gases,
however, u varies approximately in proportion to /T, and
A =—(2/3)u. The vector g; represents the acceleration, for
example from gravity.
An alternative energy equation is

opl  opy;l oy; 9 oT
ot * 3X; = Py 5?(1— * 5;1-—(7 0% (1v-29)
In vector form,
g—f + Ve(pl)=0 (1V-30)
ot > > > +O(N >
p 57t UV = pg--Up V(AT u)
+ 2AV-u) + VXupXD) (V-31)
0F 4 p@-VE = pl-f + V- [rgT—ph + Niv-3)

Par

+ % o) + (-9l (1IV-32)

An alternative energy equation is

Pg%"‘ p(U*P)] = V(W) ~pV-ii + MV -B)* + “[;/Nz @0
259w -h) + TON@Xd) + - [({..v)m]

(1v-33)
For plane, two-dimensional problems
9 , dpu  dpv _
ot "ox Tay 0 (1V-34)
du_  9p, 3 du, v
P ™ B gy ax [V 20050 +A50]
0 . du,dv
—Ju(—+—= V.35
+o GIE] L (V39)




dv_ 2 9v,.9Q
P~ P8y * ay(P+2“ay)+ax

. 50 3 , ; , (Iv-40)
Ve g 9P, 0 9V, ,0u
P ;= P8y 3y +a [(A+ 2ﬂ)ay+ Aaxu]
au av
_—p(ng +ng)+—— [Pu +QV+M—'(BI + u2)]
,.._ —_ 2
iy Pv+Qu +uay(Bl YOI - (vay
dE aT ) 6T dpu  dpv
Pap =P (ugy +vg,)+ -y Tay ay 5— ox L- _ap;," These may be specialized even further to the
interesting case in which all quantities are independent of
2 [ gu g +2 AVG ) X, and g, = 0. Then
X X y y .
cf0u . Ju 2 du
(5 +v2)= 2oy 1V-42
bR kel (@ Pty (tay) - VD)
L RGO B 5] -
ov v 9 v
1v-37 —tyv—)="2 — .
( ) p(at +vay) 3y [ p+.u(A+2)ay] » (IV-43)
in which
d_o 9 9
TE—tu—+v— . IV-38 :
dt=at " VaxtVay (v-38) I YO
P at v ay pugy ay —PVv uay
For many problems of interest, we put A 1
[(A+35) v +5u +Bl]] v (1V-44)
aT al
ax =uB 0x; ’

with the alternative cnergy cquation

in which B is the ratio of v to Cy, assumed to be
constant, Also, A = Ay, in which A is constant, often with

ol
the value A =—2/3. byt generally A >—2/3. Then, with P(at Vay —Pay+ﬂl(A+2)( ) ( ) ]
the abbreviations

+~(uB~
P:—-p+pA(§E+ﬂ) ay oy

, : o (Iv-45)

av au Another usetul case is that of cylindrical coordin-
Q=u( a ) ) ates. With u, v, and w denoting the velocities in the r, 0,

and z d:rectnons we have the following mass and

momentum equations:
we may shorten the momentum and energy equations to

ap 1 apu 1 apv+ dpw _

du i) du | .0Q at or 30 9 =0
tu_ 9 au 4o V-39 r or r z
Pt = P8 +ax(P+2ﬂax )+ay ( )

, (IV-46)
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= Pgr"‘ar
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ov vav
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3p, 8 ) du
+ar [2u

Lou _

auv

az r
10v aw)
]

1 oru
ar ”‘(?ar *138 Tz

) [(av 1du !)]
r 38 ar rdd r

1, (av47)

ov . uv
az+ )

2udv )\(laru lov, H
r o6 ror rod bz

212
ar rof r

x),,lé&
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V. Rarefactions

A. Adiabatic Rarefactions.

The simplest type of rarefaction wave occurs when

the piston at the end of a cylinder of gas is impulsively

withdrawn from the gas at a constant velocity. This same
type of rarefaction wave also occurs in other circum-
stances, making it well worth studying in detail. We
neglect the effects of viscosity and heat conduction and
take, as our starting equations [Chap. I, Egs. (III-11)}:

. O du_ :
at U TP =0

du, v 13p_
a:*“ax"pax 0

p=1(p)

This last is the adiabatic equation of state, which is
appropriate because there are no shocks or other dissipa-
tive mechanisms. :

To solve the problem, we assume that the field
variables are functions of x/t only. Then

o, xd |

ot  t*dg

d 14 V-1
— i e — )

ox td:

in which & = x/t, and the differential equations become

2
(u—s)g—;+§ §§=o : (V2)
w-9FE+pf=0 . (vV-3)

The sound speed, ¢ = (dp/dp)y’, is a known function of p.
These can be combined to show that

Thus, either du/d¢ =0 or u—§ =+ c. The former condi-
tion occurs outside the rarefaction region; the latter

occurs within it.

Within the rarefaction wave are two <hoices of sign
in the expression u~-§ =+ c. These correspond to the two
possible directions of piston withdrawal. If the gas lies to
the right of the piston, and the piston withdraws to the
left, we achieve the corditions shown in Fig. V-1. In
Region 1, adjacent to the piston, the fluid velocity exactly
equals the piston velocity. Region I is outside the
rarefaction, so that du/d¢ =0, implying that all field
variables are constants in that region.

In Region II we choose the sign by observing that at
the edge next to Region III, where u = 0, both ¢ and £ are
positive. Thus

u—§ =—c (V4)

for a leftward withdrawihg piston. We also could show by
analogous reasoning that

u~f=+¢ (V-5)

for a rightward withdrawing piston.

Region II is the undisturbed gas, where the
rarefaction wave has not yet arrived. Again, all field
variables are there constant.

To complete the calculation for the leftward with-
drawing piston, we put u = {—c into Eq. (V-2), to obtain

dc_c dp
d¢ p dg

or

. f EgB + constant (V-6)

Because ¢ is a known function of p, the integration can be

b 114
PISTON 1
Pl -
I a_
A ——
RAREFACTION WAVE
X
Fig. v-1.

Rarefaction wave with the piston withdrawing to
the left.
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performed and the full solution worked out. An example
will show this in detail.
For a polytropic gas,
: v-1
c:ch(p/pO) 2 ’

where pg and ¢y describe the undisturbed state in Region
l1. Thus,

oo 2 .
f p -1 (V-7
and we get
el § '
c P IE + constant

or
and

But u=0 at £=§,, so that &, = cg. Thus, within the
rarefaction (replacing £ = x/t),

=2 (X
u== T=Co) (V-8)

c=Xol(Xy 20,

y+1\t T7-1 (vV-9)

for leftward piston withdrawal. Point b moves according

to the result &, =cgy, or x, =cgt. The front of the

rarefaction progresses to the right with the sound speed of

the undisturbed fluid. The velocity of point a is found

from the value of £ at which u= up, the piston velocity.
Thus

In the special case that £, = Up, SO that the back of the
rarefaction exactly follows the piston, we have

N

Cq

|

u, =—

o (V-10)

2

This is the escape speed. If the piston were to move any
faster, the gas could not follow. Note from Eq. (V-9)
that under these circumstances, ¢ =0 at the piston, so
that the density has become vanishingly small.
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Summary of Rarefaction Formulas. Leftward

moving piston (Fig. V-1):

In Region I:
u=up(<0) ,
7-1

c-'=c0+-—2:-—u1p

In Region II:

o= (Ee)

=y=lex, 2¢cy
¢ 'y+1(t +7—~1>
In Region HI:
u=0 ,
C=CO

Also,

. . _ T+1
velocity of point a= ¢, + 5 Up

velocity of point b = ¢,

Rightward moving piston (Fig. V-2):

In Region I:
u=u, (>0
= 7-1

C"CO - --é*v'up

\——__v______,‘
RAREFACTION WAVE

PISTON
e
g . S

X
Fig. V-2.

Rarefaction wave with the piston withdrawing to

the right.
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In Region 11:

0= 51 (f o) ¢

In Region 1H:
u=0 )

€=¢

Also,

velocity of point a =—cot 72;1 u, ,

velocity of point b =-c,

In both cases, the other fieid variables can be found from
¢. For example

P =po (i) "

2y
¥-1

P'_‘Po(i)

Lle

I=1, (;f)‘)ﬁ

Note that u and ¢ vary linearly in the rarefaction. For

v = 3, p also varies linearly, but for y < 3, p(x) is concave
upwards.

B. Isothermal Rarefactions,

If the heat conduction rate is great enough, all parts
of the fluid will remain at the constant initial tempera-
ture, and the isothermal sound speed, C; =+/(v=DI, will
also be constant in space and time. In such a case, the
equations are particularly simple to solve. Consider the
example of a piston withdrawing to the right. With

o =Cn(o/p,)

the equations become

90, 9o du _
ot *“ax+ciz§“° ’

ou_. Ju 90 _
at "Uax Tl =0
As before, the solution is found to be

X
u=t—+Cl-

b

X _c

0=-7-C;

At the place where u = up,, we find that x/t = up=C; and
0= ~uy,. Thus, at the piston, the density is

) Up
Pp=Poexp(-c-)
1

and we conclude that no matter how fast the piston
withdraws, the fluid can follow, so that the escape speed
for an isothermal gas is infinite.
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V1. Shocks

A. Normal Shock Relations.

1. General Discussion. We showed in Chap. III that

when a succession of compression waves are formed in a
gas, with each propagating faster than its predecessor, the
waves eventually pile up at the front, forming almost a
discontinuity in the field variables. The transition from
undisturbed to compressed gas occurs almost instanta-
neously over a region so thin that the model of a
discontinuity is in many cases a valid approximation. This
discontinuity is known as a shock, and, although the
differential equations for an ideal fluid actually predict its

development, they become meaningless at a shock and

offer no clue for its subsequent treatment. The inclusion

-of viscous effects in the equations removes the teridency
to discontinuity, and even allows a fairly accurate

prediction of the shock-transition details.

In addition to shocks, there is another type of
discontinuity that can occur: the contact discontinuity. A
contact discontinuity moves with the fluid and generally
occurs at the boundary between two types of fluid, but it
may ‘be generated within one fluid under certain circum-
stances.

The shock, on the other hand, moves relative to the
fluid, changing the state of each fluid element as it sweeps
by it. This can be seen by considering the following
simple case: The shock is an infinite flat plane separating
two semi-infinite regions. Each region is characterized by
perfect uniformity within itself, and material ‘velocities
are everywhere normal to the shock plane, .

The notation of Fig. VI-1 will be followed. Here the
shock is moving to the right and the fluid is more
compressed on the left. In general, the shock speed, v, is
greater than the material speed on either side. Also,
u_ >.u,, which follows from the fact that all shocks are
compressive. Four conditions exist which relate changes
of the indicated variables across the shock, The first of
these is the equation of state; the other three are derjved
a3 consequences of the threc fundamental conservation

SHOCK
E. '
P_ |
u_ |
P_ |
£+
////////’, ‘ P

/1 v L
/] P,
PTTT T

Fig. VI.1.
A plane, one-dimensional shock wave,
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laws and are known as the Rankine-Hugoniot relations.
We shall now examine the derivations of these relations.
The results that follow are appropriate not only for the
simple case shown in the diagram but are also instanta.
neously appropriate for curved shocks with nonconstant
adjacent states, as long as the material speed is everywhere
normal to the shock.

2. Fundamental Derivation of the Shock Relations.
a. Conservation of Mass, The distance per unit time that
material moves relative to the shock is {(v—-u,) in the
region ahead on the right, and (v—-u.) in the region the
shock has swept over on the left. The mass per unit area
of shock per unit time, denoted m, which passes into the
shock from the right, is thus m = p+(v-u,). This must,
however, be identical to the mass per unit time which
leaves the shock to the left, in order to obey the
conservation law. Thus we have

m=p,(v-u,) =p (v-u) . (VI-1) -
b. Conservation of Momentum, The momentum per unit
aréa per unit time passing into the shock from the right is
mu,, while that which leaves the shock from the left is

mu_. Thus the change in momentum per unit time is

m(u_-~u,), which must equal the force per unit area on
the system:
m(u~u)=p ~p, (VI-2)

c. Conservation of Energy. The change in energy per unit
area per unit time is given by m(E_--E,), which must be
equal to the net rate of doing work on the region:

m(E~E,)=pu.- Pely . (V1-3)

These three simple results are useful for explosing 5
number of situations, as will be shown. But first, for
convenience in handling the shock relations, we introduce
the following notation for each field variable:

da = ay~a.

a = %(a+ + a-) )

where a stands for any of the field variables. The
following identity may also be written:

6(0.1 az) = &, 5(12 + &zéa, ’

In terms of the above notation, the shock relations may
now be written as




m =vp-pu \
vép =368 (pu)
(VI4)
mdu =8p
méE = § (pu) J

Probably the three most useful general forms may
be obtained by setting E=E + 1/2 u? and eliminating m
from the equations, which results in !

vép =3 (pu)
(p) (5 5) ==(5u)® (VL.5)
51 =-p(67)

3. Integral Derivation of the Shock Relations. In
Chap. HI, it was shown that the one-dimensional equa-
tions could be expressed in integral from. These equa-
tions, Eqs. (111-41) and (111-42), are all of the type

$ (Bdt-Adx)=0 .

They express the conservation of mass, momentum, and
energy in either Eulerian or Lagrangian coordinates and,
since they are not ambiguous at a discontinuity, we are
accordingly justified in assuming that they are valid at a
shock.

The line in Fig. VI-2 is a plot of shock position
versus time, with the shock moving in the positive
x-direction. Draw a rectangle about a segment of the
curve in the vicinity of a point of interest. The rectangle is

to be considered so narrow, in a direction normal to the

curve, that contributions to an integral around the

t

Fig. VI-2.
Shock position vs time.

rectangle due to its ends will bé negligible. The rectangle
cuts the shock curve at (x,,t;) and (x;,t;). The integral
equation for a path around the rectangle is thus

A _(x2=-x;)-B_(t; =t)+ A, (xy=x2)
—B+(t1—tz) =0 N

where higher order contributions due to finite rectangle
size have been neglected. If, now, the rectangle is
sufficiently short, then (x;=-x,;)/(t;~t,) differs negli-
gibly from the speed of the shock, v. In this limit, the
result from the integral equation becomes

v6A-6B=0 .

Thus, from the conservative Eulerian equations, Egs.
(111-41),we obtain

vép = 5(pu)
v8(pu) = 8(pu* +p) '
v8(pE) = 8(pEu+pu) -

The fiist of these is identical with the previous result in
Eq. (VI-4). It can be shown that all threec of them are
reducible to the results obtained from the fundamental
derivation.

From the conservative Lagrangian equations, Egs.
(111-42), we obtain

v'poa(%) ==8fu ,
vip,bu =8p )

Vp,8E  =8(pu) ,

where v’ is the Lagrangian shock speed; that is, the speed
of the shock relative to the unshocked material. The
quantity v p, is exactly equal to m, the mass per unit area
per unit time passing across the shock. Thus

mé()  =-su ,
méu =8p »
méE =8(pu)

Through the Eulerian definition of m in Eq. (VI4), it can
be shown that all of these different forms of the shock
relations are equivalent.

4. Shock Relations for Special Cases. Analytical
solutions will now be presented for a variety of the more
common cades that may arise.

a. Fluid Ahead at Rest. If the coordinate system is such
that u, =0, then

33




p.=py)=p.u. ,

(P=p+) (.= py) = p.pyu’? (VI-6)

_p-*p+
-1, = 20. oy (o.=p4)
In particular, Eq. (VI-6) may be transposed to give the
shock speed in terms of material speed and densities:
p.u.

v, = ———

S p-ps

b. Fluid Behind at Rest. If the coordinate system is such ,

that u_= 0, then

v(p=p0s)==pyu,

(p=p+) (p.mpy) = P.P+U-2r s
L
l_"' I+ - zp- p+ (p-—p-l- )

¢. Shock at Rest. If the coordinate system is such that
v =0, then

P =piuy )
(p-=ps) (0~ p4) = (u-u,) PP+ »

p.tps+
20. P+

(p.ps)

L -1, =

d. Polytropic Gas. 1n the special case of a polytropic gas,
the relations may be rewritten in a number of convenicnt
forms. First, let ¢_and ¢, be the sound speeds behind and
ahead of the shock, respectively. Consider the casc where
u, = 0. We define

M:v_. Y
—C+
u.
Uus=s— ’
€t
ZE'p; ’
P+
- P-
P_P+ .
,_u
M=—
c.
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Relative to the gas ahead of the shock, M and U are,
respectively, the Mach numbers of the shock and of a
piston producing it. M" is the Mach number for the flow
behind the shock. It follows from the shock relations that
U, Z,P, and M’ are all functions of M alone. Thus

_2AMP-1) ,

Tyt DM

S A N

Cy-1+(2/M?%)

- 2y ~
P—].‘fm(Mz'-l) )
M = 2AM? ~1) o

M{{r=1+(@2/M)] [29M2y + 1] } % -

or, conversely,

4 4
27z
2L .
M = ooz
2 . r+1 ..
M? = 1+ (P 1)

M2 == 86T M) A+ DM {1+ (ot 1)/4) 2 (')} ¥
4y(y-1) (M')*-8

e. Infinite Strength Shock. I the shock is very strong
(that js, if the shock speed is large compared to the snund
speed ahead), then M — oo and

U, 2
M y+1
Z__). .’y+_l. 5
-1
P 2y -
MET 1 '
SN |
i)
y{y-1 N



Thus, the following conclusions can be made
concerning an infinite strength shock.

1. The shock speed is determined by the fluid
speed behind it. I the shock is formed by a piston moving
with uniform velocity, the material speed behind the
shock equals the piston speed and

2

up = 'YT v

2. The compression produced by an infinite
strength shock is independent of the shock speed and
depends only on the nature of the gas. Since, in general,

Pyl
Py Y-1 +(2/M%)

the greatest possible compression that can be produced by
a single shock in a polytropic gas occurs as M - oo

p. _(y* 1D
Py (y-1) -

As an cxample, in air, with y = 1.4, the greatest possible
shock compression is 6.

3. The maximum Mach number for the flow behind
a shock moving into a polytropic gas at rest is a function
of y only. Any increase in material speed as that critical
Mach number is approached causes the sound speed to
increasc by the same factor. In air, this limit is M = 1.89,
although vastly higher Mach numbers can be achieved
cxperimentally. In wind tunnels, for example, high-
velocity gas is allowed to expand in special chambers so
that it cools. If the conditions are properly arranged, the
sound speed goes down and the flow Mach number
increases.

The relations for an infinite strength shock can be
summarized in more convenicent forms:

ﬁ_ =3{_‘l (V1-7)
+
L= %u? (V1-8)

= 2 _ I) = 2 _,,_-’;,_
p. = p.u’ 3 Py v v ¥ 1
R S A G )

3

Note from Eq. (VI-8) that there is equal partition
between internal and kinetic energy behind an infinite
strength shock. Note also that for most real gases, which
often can be considered polytropic with y<2. the
material speed behind the infinite strength shock is
greater than the sound speed.

f. Stiffened Gas. A shock moving into a cold material at
rest, that is, one for which I, and u, =0, has the shock
relations, from Eqs. (VI-5):

vép =8pu=p_u. s
1,22

6p6p+u_ s
=1 _

L+p6p—0

If this material is initially at its normal density, then
p+ =0and

u. p.
v=
P~ Py

11\ ,
—— —Jul =0
p-(P. P+> i
1 1
21+ _(—*—)=0
P‘p- Py

Consider the “stiffened” polytropic gas equation of
state, which approximates some metals. The equation of
state is

p=2a%(p=pg) + (y=1)pl

Setting p, = pg, dropping the (-) subscripts, and defining

o 20 B

d o

RE£— Ty
Po

p? = 28
_7_]

leads to the solution

or

R-1

y.: ——— .
b [R@-R)]”

Note that R < d for all u/b.
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The compression ratio for the stiffened gas equation
can be examined further by comparing its relations with
those outlined in d. above for the simple polytropic form.
Recall that for

p E(?l"’ l)p[ ’

it was seen for an infinite strength shdck, Eq. (VI-7) gives

Poomtl
Py M 1 ’

where v, denotes the v chosen for the simple form. But,
for the stiffened form, where

p=a’(p=pg) + (72 + Dpl

and 1, is the 7y chosen for this equation, the compression
ratio for an infinite strength shock is

©

= =f<)’2 r%)—

S

5T

where A =u_/a. To get this same compression ratio from a
polytropic gas would require a rather large v,, since, in
representing relatively incompressible materials, such as
metals, one wants p_/p, = 1; therefore, vy, > 1. Setting
the compressions equal and solving for v, in terms of v,
we find

4+ A2 (—1———3 ’2_ l)+ A[4 +(1——-—’ ; 1)z A’] %
1= — 7
- W) Al 4]

For A S1.0and 72 at least up to 4.0,
_2a 12 -1
yy *— +
T u, 2

This is the value of v necessary for the polytropic gas
equation of state, by which that equation can approxi-
mately represent a stiffened gas with y = v,.

& Isothermal Shocks. In considering isothermal shocks,
we use the shock relation based on the conservation of
momentum, which may be written

mbu=58p=al bp ,
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2 2
(1 o) o]

where su
m='p"v.'p—ﬁ=—-—-1—- . (VI‘9}
§(3)
together with the relation
S[pu-v)]1 =0 . (VI-10)

The constant isothermal sound speed is aE\/(:y—:T)'f.

These two shock relations have the solution du=6§p =0,
unless

m(v-) = 2?5 = B
This last relation can be used in place of either of the
others.’

Consider an isothermal shock passing into a material
at rest. From Eqgs. (VI-9) and (V1-10),

p(V=-u)=pov .
Also,
Pouv =a’(p=p,)
With p eliminated,
vieuv—-a? =0 ,
w.aich is the form that results from a shock moving into a
material with isothermal sound speed a.
Thus, if the piston speed, u, is given, then
v=1%[u+ (u? +4a%)"% |

and

p _ (2 +4a?)% 4y
Po (ui +4a2)“—y

h. Shocks Fromed by Wall Heating. Consider the equa-
tions for steady one-dimensional motion of a gas in a
cylinder with nonuniform wall heating:

du_ _9p
”“ax ox
dpu _
ox ’
ol du
'“ax" pax *+8




Here S = the energy source per unit length per unit time.
The second equation can be integrated to give pu = m, the
constant mass flux. We thus start with

pu=m
mu+p=B |
and
ol _p 9p
== = +
max m 0x S
or

2 X
m|=9_+] Sdx+D
2m o

B, m, and D are all constants, to be determined by the
flow conditions at some prescribed position in the
cylinder. _

Suppose that I =p/(y-1)p is the equation of state
for the gas. Substitution gives

*'“P___Bi=(f+p)

(y=Dp 2m ’
2
m
— +p=B ,
P P
where
X
fix)=J, S dx
Next,
m_B-p |
o m

solving for p results in

__8B B2 ., y-1 #
p_7+lx&ﬁjy 2m7+l«+pﬁ .

Let S(x) =0 for x <O0. There also, P = po, U=1ug, and
P = po. Then
m = PoUg s

B=pous® +p, ,

Uoho p:

2p5u,

(-1
Note that if D = 0, then

= 2pouo”
71

Po

which shows that the initial state was produced by a

shock passing through a cold, homogeneous material at
rest. But, in general, D s 0, and thus

73

ol

2

2 2
=Po * Polo YPo ~“PolYe”) _ 1=
p e +[< o ) 2;Oouo(,erl

showing the variations of pressure as a function of the
heating integral, f(x). In terms of p, we also can find

p= m? = Po’u,’ = Po
B-p pous? +p, —p 1+p°—-§
Polo

and

u _

Polo

When p becomes imaginary, a shock is formed. If the
fluid speed is exactly sonic, then

Po =Lollo_ :

Y , Withug =¢o

and

P=pot|—2pou 7~-l)f(x)] %A
0 007+1

In this case, even slight heating at a fixed point will
produce a shock. If uy > ¢, then the pressure rises with
heating, the velocity decreases, and the density increases.
If uo <co, on the other hand, the results are the
opposite.

i. Decay of a Shock Wave. We shall now obtain a

relationship between the acceleration of a shock front and
the gradients behind the shock. Consider the shock to
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have infinite strength. Then, along the line in x-t space

- 2v
ug TF1

+ 1
ps 7_1p0

=1
I /“’s

Just behind the shock we have
% ,%pu_ _n
ot ax X pu

du, du, dp_
”at“’“ax ox 0

al, al 8_u__ﬂu ,
P tPug D oy

p=(y-Dpl
where n = 0 if the shock is plane, 1 if it is cylindrical, or 2
i it is spherical. The changes of p,u, and I along the shock
motion just behind the shock are given by the following
version of the infinite-shock relations:

92) T
(dt s ot T Vax

g_g) i)uJr ou _ 2v

= 0 s

dt at  Vax y+1 °
dl) _ al 8l _ 4w
— = — + v ._._.____i
dt/, ot ax v+t 1

These cnable us to eliminate the time derivatives and to

write the desired equations in three unknowns:

3 ) )
af p,): aﬁ* ou (VI-11)
v du du 1y del_
p[w' Va*]“’“ FOTDEE0 L iy
4vy al ol ou
p[h”) a‘]w‘pu tr- l);ol—~’r (7—1)
plu =0 ..(VI'B)

38

The three unknowns are dp/ox, du/ox, and dI/dx, which
are to be determined as functions of the time rate of
chiinge of shock speed, v. The solution of these equations,
utilizing the Rankine-Hugoniot relations for the shocked-
fluid field variables, gives

__6(yt1)vp, _2npg
ox (y-1)*v* (y-1)x
du_ 6v _ 4ynv
ox (y+l)v (y+1)x
o _ 8- YW Ay—Dnv?
ax (y-Hiy+1)*  (y+1yx

j. The Very-Weak Limit: In the limiting case of a weak
shock, we put M=1+ ¢, where 0<e < 1. Examples of
approximate weak-shock relations are

[ 1
c, ~ 1+ 2€< +1>

Perhaps the most important feature of the weak shock is
that the entropy change across it is extremely small, and
goes as ¢>. This may be shown in the following manner,
From Eq. (111-51),

59 = K [Qn P2, Q,,Bz] ,
Y- P1 P

1

where k =(y~1)b = (y-1)c,.

But for a polytropic gas

1=z
P2 ___7I+Z ,
P 1+ l~l
1+2
where
Z=p,[p
Thus
S St/
k +
S; =8y = —— [#n — 1+2 Y8nZ
1-Z
1+
1+Z




FOI’Z‘=1,Sl=Sz .
IfweletZ=1+¢, |,

whcre,v according to -the Rankine-Hugoniot equations
€, =4¢/(+v+1), then

onm (3] ofeel)

—y!n(l+el)}

Sk f AN, o149V 1 3(1_113
“7—1{6‘( 2) ”e’(z ) T3\ 2
1 - 1-9V _ 1 _5f1-9Y
~a(7)e e () - 34 (57

‘61’7*%612’7“%5137"‘---}

Finally, replacing €, by its function of e,

16yke®

R CEEALLR

Sz —S (VI'14)

B. Oblique Shock Relations: The Wedge Problem.

The flow of gas past an infinite two-dimensional
wedge of half-angle a approaches a steady-state configura-
tion as time passes. If the incoming flow is sufficiently
fast, an attached shock is formed, as shown by the broken
line in Fig. VI-3. Since the appearance of the configura-
tion is independent of magnification, there is no signifi-
cant length to the system, and the shock line must be
straight. Furthermore, the trajectory of any given fluid
element will be a pairof straight lines as shown, and the
trajectory beyond the shock must be parallel to the side
of the wedge.

The shock relations for this problem can be formed
in exactly the same way they were formed for the simple
one-dimensional shock in Chap. VI, Sec. A, if one first
resolves the velocity on each side of the shock line into
components parallel and perpendicular to the shock. This
is shown graphically in Fig. VI-4. If we let m be the mass
per unit area per unit time crossing the shock, then

m = poug sin § = pu sin (0~a) .

Fig. VI-3.
The flow of gas past an infinite two-dimensional
wedge.

The conservation of tangential momentum is given by
mug cos & = mu cos (6~a) ,

and the conservation of normal momentum is given by
Po * mug sin 6 =p + mu sin (6-a) .

To conserve energy, we have
mEq + pouo sin 6 = mE + pu sin (0-a) .

These four relations, together with the equation of state,
are sufficient to determine the shock angle 0, as well as
the field variables behind the shock (p, u, p, E). all in
terms of the input field variables (oo, uo, po, Ey) and the
angle a.

This can be shown with a simple example:

Consider a polytropic gas, where we know that

E=———p +lU2

(- 2

Fig. VI4.
Resolution of velocities on both sides of the shock
into components parallel and perpendicular to the
shock.
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In terms of the incoming flow Mach number M,, where
Mo =u,/co, one can show that

2+(y-1)MZ sin? 0

- (VI-15)
(y+ 1) My sinf cos@

tan (0 ~a) =

For given values of My and a, one can find 8, and obtain
the other field variables from

= tan 0
P =P (€ -a) ’

U= cos 0
% cos (6 —a) ’
p = po +poU02 Sinz 0 [1 - t_a_:;%lo_e:f%)] .

Note that if My = o, that is, the incoming flow is cold, we
have, from Eq. (VI-1§),

y—1

tan (0 —a) = oy tan 6
so that
=, XH1
p Po 'y_l )

which agrees with the relation for an infinite strength
shock given by Eq. (VI-7). Further, in this infinite Mach
number case, one can solve explicitly for @,

1-[1-(y* —1) tan® a] ®
(y—1tana

tan 6 =

but the ahove solution is real only if

1 ¥
< e
tana < (:YT" 1)

If the angle is greater, the shock iz detached from the
wedge, and a different procedure is required to solve the
problem.

If a =0, meaning there is just a point disturbance in
the flow field, then Eq. (VI-15) yields sin 8 = 1/M,. Therc
is no dependence on v in this case. The line emanating at
this angle is called the Mach line.

The graphs illustrated in Figs. VI-5 and VI-6 plot
the wave angle @ for a plane shock as a function of Mach
number ahead of the shock, Mg, for various values of a.
The first graph, Fig. VI-S, is for diatomic gases, such as
air, where v=1.4; the second graph, Fig. VI-6, is for
monatomic gases, where y = 5/3.
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C. Oblique Shock Reflections: Regular and Mach,

1. General Discussion. The simplest example of a
shock reflection is that of a one-dimensional shock wave.
Recall that in Chap. VI, Sec. A, we replaced the
hydrodynamic equations of continuous flow with equa-
tions relating the changes of the field variables across a
shock wave. Four conditions existed: The first was the
equation of state, while the last three were based on the
conservation laws and were known as the Rankine-
Hugoniot equations. Together, they formed a set of shock
relations capable of predicting the strength of a shock
which has undergone head-on reflection by requiring that
the reflected shock leave the fluid behind it at rest.

If, now, we choose to study the reflection of a
shock from a solid boundary at some angle of incidence
other than head-on, we find that the problem becomes
somewhat more complicated. It is known as the “inter-
action problem,” in that the solid boundary can be
considered a plane of symmetry for the interaction of two
shocks of equal strength. The problem is simplified by the
fact that there is no characteristic length to the system
and the equations can be transformed so that our
variables become x/t and y/t. Thus, the configuration will
grow so as to remain self-sirnilar at all times.

Consider a plane shock wave, I, which is traveling
with constant velocity in an ideal gas of negligible
viscosity and heat conductivity and which is incident at
an angle o upon an infinite, plane rigid wall, causing a
reflected shock, R, to arise from the wall. The problem is
identical to that of a symmetrical wedge of infinite
length, oriented so that the bisector of its vertex is normal
to the incident plane shock, as shown in Fig. VE-7. Two
parameters may be varied: a, the angle of incidence, and
&, the shock strength p, /p..

Oblique shock reflection processes may take either
of two qualitatively different forms, regular reflection or

s
I

Fig. VI-7.
Regular shock reflection process.
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Mach reflection, the latter named after the physicist who
first reported it. Regular reflection occurs when the angle
a is small or the shock is sufficiently weak (¢ - 1), so that
signals from points behind the shock move more slowly
relative to the wall than does the shock itself. Thus the
region influenced by the wedge may be divided into two
subregions, numbered 3 and 4 in Fig. VI-7, to the first of
which the wedge appears to be of infinite extent. The
dividing line between these two regions is a rarefaction
wave originating at the vertex of the wedge.

If we now decrease the wedge half-angle ¢ so that
the angle of incidence a increases, the signal from the
vertex approaches the intersection of the incident shock
with the wall and finally overtakes it at some angle a,
where the flow in region 3 in Fig. VI-7 is just sonic
relative to the point of intersection. The reflected shock
has now become curved over its entire length. At some
slightly greater angle, a,, the theory of regular reflection
no longer gives a two-shock solution, and at a still greater
angle, ao, Mach reflection begins. These are shown in Fig.
VI-8. A typical Mach configuration is shown in Fig. V1.9,
The reflected shock R meets the incident shock I at some
point T from the wedge, and this point is joined to the
wedge by a third shock M, commonly known as the Mach
stem. The intersection point T of the three shocks is
known as the triple point, and a fourth discontinuity, a
slipstream or contact surface S, originates at the triple
point and comes back down toward the wedge. The
slipstream is characterized by a discontinuity in tangential
velocity, temperature, and density but not in pressure. It
is associated with a difference in entropy between the
streamlines passing just above and below the triple point.
The component of velocity tangential to the slipstream is
discontinuous, whereas the normal component is contin-
uous. The entire configuration grows from the vertex in a
self-similar fashion.

If we further decreasc the wedge half-angle ¢ to
cause yet more glancing incidence of I, and increase the
shock strength to the point where the flow behind the
shock becomes supersonic with respect to the wedge, we

- Fig. VI-9.
Typical Mach reflection process.
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observe a variation of the Mach reflection process, as
shown in Fig. VI-10. The reflected shock R is now
attached to the wedge vertex, forming a bow wave W. Gas
moving through this wave is supersonic relative to the
wedge, and thus the gas which was originally at the corner
when the shock I first hit the wedge is carried along so
rapidly that signals emanating from it cannot influence
the region adjacent to the corner. This is a region of
uniform flow (numbered 3 in Fig. VI-10), and is separated
from the nonuniform region behind it (number 4) by the
leading edge of the rarefaction wave sent out from the gas
which was originally in the corner region.

We have now discussed qualitatively the two basic
types of oblique shock reflection processes. The following
discussion will describe quantitatively the theories in-
volved, so that one may predict the type of reflection
process that would be expected from a given set of initial
flow conditions: v, a, and £.

2. Regular Reflection. The theory for the steady-
state region in the regular reflection process determines
the strength and angle of the reflected shock by applica-
tion of the condition that the flow behind the reflected
shock be parallel to the wall. We shall see below that there
are two solutions for the angle of the reflected shock;
these correspond to the so-called weak and strong families
of shocks. If we let the incident wave become sonic, the
strong shock solution predicts that the pressure on the
wall becomes infinite, which contradicts acoustic theory.
(Further, it has been found experimentally that the
reflected shock is always in the position corresponding to
the weak shock solution, as shown in Fig. V1-16.) Figure
VI-11 gives a set of curves,each of which represents @’ as a
function of a for the fixed value of £ given on the curve
and v = 1.4. Figure VI-12 is a similas plot, but for v=5/3.
It is observed immediately that the angle of incidence is
not equal to the angle of reflection: a % «'. The sclution
is obtained in the following manner.

x
2 !
Pt R .. :
~ST
/
/
S m
/ / ,k.m;p
w P
4 / 1
/ 3:.4:m/ AR A
Fig. VI-10.

Typical attached Mach reflection.
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ngths undergoing regular reflection.

Angle of incidence vs angle of reflection for shocks of different stre
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Assume, in accordance with experimental results,
that when a plane shock wave is incident upon a rigid wall
a plane reflected shock is created and that in any of the
angular domains the fluid is in a perfectly uniform state.
Thus we have the situation shown in Fig. VI-13, whose
notation we shall follow. Here I is the incident shock
wave, and R is the reflected shock. It is convenient to
work in the coordinate system in which point O is at rest,
causing the reflection to remain stationary.

The vectors Z and Z' denote the flow incident on
and emerging from the shock wave I. The tangential
component of particle velocity is conserved in crossing a
shock wave, but the normal component is decreased since
shock waves are compression waves; thus, the flow vector
is deflected away from the normal to the shock crossing
it. The anglec measured from the normal to the shock, Ny,
to the incident flow vector is denoted by 7, and the
deflection Z to Z' is denoted by §. These quantities are
similarly defined for the reflected shock wave, as shown
in Fig. VI-13, along with the addition of primes where
necessary.

The problem is reduced by assuming constancy in
cach flow region. Thus, given the angle of incidence,
a=(n/2)-7, and the strength of the incident shock,
£=p,/p., one can determine the position and strength o’
the reflected shock. We know that the flow Z' must be
parallel to the wall. The Rankine-Hugoniot equations
cnable us to determine the deflections produced by a
shock wave in terms of ¢ and a. We now use these to
obtain mathematically the condition that the total deflec-
tion (from Z to Z") be zero.

It is now evident that we may write:

atr=a2 ,
a+8'+7=n/2 |,
§==8'

We next set
X =tan 7 = tan (7/2—a) .

The relation between the pressure ratio and the compres-
sion ratio is given by

+

2

Fig. VI-13.
Notation for theory of regular reflection.

which reduces to

+1
n = B; = ——-7
pr T 1
for an infinite strength shock (£ = 0). We next solve for &
from the equation

tan(t+8)=ntan7v",

which is
5= tan"Fl—))g(—

+nx

The deflection condition is equivalent to the requircment
that 8 + 8’ = 0, that is, to

+y -1
p=bf = —ET (x=x)y + (1 +x"?)(n- 1)1 + x?)
=0 _ '
AL + 2 X X)X+ 1) (= 1] =0
To solve this for x', we divide by the linear factor
(nx-x"), which leaves us with a quadratic whose solution
is

o = Z2XERH) £ (X)) — ) )] - [t

2Pl (1+x* (= 1)~ 1] + [ 147 (n +1)] + 1 (Vi-16)
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The upper portions of the curves in Figs. VI-11 and VI-12
correspond to the use of the + sign in front of the radical
in Eq. (VI-16), the lower portions to the - sign. The
resulting roots for x' are negative, and since

x'=tan7'
the a’ values are given by

a'upper =m/2 - [(tan”"| x'upper') +6] ,

@' ower = /2~ [(tan™ lx’lowerl) +6]

As the angle a is increased, keeping & constant, the
Mach number of the flow under the reflected shock
decreases with respect to the shock intersection with the
wall until at some angle a this flow is just sonic and a
region of uniform flow is no longer under the reflected
shock, which is now curved over its entire length. The
two-shock theory above assumes uniform flow but
should, nevertheless, remain valid in the immediate
vicinity of the shock intersection since no evidence of
angular variations exists there and the flow deflection
condition is still satisfied. As a is increased still further,
the two solutions approach one another and coincide at a
slightly greater angle a,, as shown in Figs. VI-11 and
VI-12. However, regular reflection has been observed to
persist somewhat beyond this theoretically limiting value.

The a, curve is obtained by seiting the radical in

Eq. (VI-16) equal to zero and solving the resulting cubic
for x. Then, since we may write

a,=m/2~tan? x

we follow the equations outlined above to obtain a,'.

The theory of regular reflection agrees well with
experimental evidence for a<a, for all shock strengths,
with the exception that for the strong shocks £ < 0.2 the
points for a near a, fall consistently below the two-shock
curve. It has been suggested that the change in 7 for air at
high temperatures may be responsible.

3. Mach Reflection. The three-shock theory is used
to compute the angles at which the shocks meet in a Mach
reflection process so that the flow passing through the
two shocks emerges parallel to and at the same pressure as
the flow passing through the single shock (Mach stem).
This theory assumes that in the immediate vicinity of the
triple point the three shocks are straight and that all
regions of flow are uniform. We shall follow the notation
of Fig. VI-14, with our coordinate system fixed in the
triple point, so that the incoming flow enters the incident
shock at an angle w. The discontinuity R makes an angle
w' at the triple point; thus we have

w=a=-x ,

w=a4+yx ,
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Fig. VI-14.
Notation for three-shock thecry.

and w and w' reduce to the angles of incidence and
reflection for regular reflection (x = 0).

In this coordinate system, the flow behind the
incident shock remains supersonic and, since the flow
component normal to the reflected shock is required to
be at least sonic, this shock must fali between the
upstream and downstream Mach lines. When the flow is
just sonic, these lines coincide at a position normal to the
flow, and the reflected shock reduces to a second wave,
This case is known as the “extreme sonic solution,” and it
is approached as the wedge angle € is decreased, keeping
the shock strength ¢ constant.

It has been shown experimentally that if £ is held
constant, x is an increasing function of a. As a decreases
along a vertical line in Fig. VI-8 from a point in the region
of Mach reflection, a critical value a = a, will be reached
at which the Mach wave can no longer be found and the
triple point T seems to coincide with the wall. By plotting
X vs a curves for constant ¢ and extrapolating to x = Q,
the angle a, is well determined, as shown by the curves of
Fig. VI-15, which were based on experimental data.

Various families of three-shock solutions have been
developed, and wusually chosen for comparison with
experimental data is one that agrees well for strong
shocks. Unfortunately, it disagrees seriously for the weak
shock cases, as the nature of the soluiics is such that in
this domain it is physically unreasonable. If the strengih
of the incident shock is held constant while « is
increased, or as the Mach number of the supersonic flow
behind the incident shock decreases, the strength of the
reflected shock will diminish and finally vanish while the
flow is still supersonic. The limiting position of the
reflected shock is that of the upstream Mach line from the
triple point. As w is further increased, there is no solution
until the extreme sonic value is reached, when a reflected
shock of zero strength again becomes possible. This may
be seen in Fig. VI-16, where theory and experiment are
compared. The solid curves were plotted according to the
theory of regular reflection, and are from Fig. VI-11. The
circles and triangles are experimental data on regular and
Mach reflections, respectively. The squares and diamonds
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Comparison of theory and experiment in regular
and Mach reflection, y= 1.4, from Bleakney and

Taub.

represent values of w and w' at which the total flow
behind the incident shock is just sonic with respect
tC an observer moving with the triple point, and beyond
which no solutions for w exist. The decision on the point
at which regular reflection ends and Mach reflection
begins is based on the extrapolation to x = 0 of the curves
of Fig. VI-15.

For strong shocks, the agreement of the experi-
mental data for a > gy with the three-shock theory curve
is fair, but certainly not as good as that for regular
reflection. The three-shock theory is very inadequate for
weak shocks, and it has been criticized because it does not
take viscosity and heat conduction into account,
Although this may be a crucial defect, one would expect
to see some evidence of their neglect in the comparison
between theory and experiment in the case of regular
reflection also. '

More information on oblique shock reflection pro-
cesses may be found in the publications of Bleakney and
Taub, Courant and Friedrichs, Polachek and Seeger, and
White.




VH. Some Compressible-Flow Solutions

A. The Shock Tube.

A cylinder is divided into two semi-infinite sections
by a diaphragm (Fig. VII-1). Initially, gas is at rest on
both sides, all at the same temperature. To the left of the
diaphragm, the gas is initially at a higher density and
pressure p_and p_, than on the right, p, and p,. On both
sides the specific internal energy is I ,.

At t =0, the diaphragm is removed, and at any later
time there is observed a shock, s, moving to the right; a
contact discontinuity, ¢, moving to the right; and a
rarefaction wave, bounded by points a and b, moving to
the left.

There is no significant length to the system (the
appearance of the configuration at a later time is a
magnification of an earlier appearance), so that each point
moves with constant speed. The rarefaction wave on the
left was discussed in Chap. V. The contact discontinuity
in density is tentatively allowed because similarity argu-
ments cannot remove it. We shall see that, if the density is
assumed continuous at ¢, the problem is overdetermined.
The point at ¢ behaves as if it were a piston pushing with
unitorm speed, and thus produces a shock, as discussed in
Chap. VI.

Eight unknown quantities are to be determined: o>

P. c
P P+
]
|
INITIAL N X
I DIAPHRAGM
| POSITION
P- b p {
Llic »p
P o ' RS Py
|
|
I
!
LATER X
Fig. VII-1.

The shock ruhe.

up, PL, Iy and pg, ug, pr, Iz. Through the equation of
state, two of these, I; and Iy, can be eliminated. Since no
gas passes over the contact discontinuity, we must have
up, =ugp (we call them both u_). Also the pressure must
be continuous across the contact discontinuity (other-
wise, there would be an infinite acceleration); we put
PL =Pr =p.. We are thus left with four unknown
quantities, py, pg, U, P, for which four relations are
needed. These are obtained as follows (we assume a
polytropic gas). Across the shock, we use the relations of
Chap. VI in the forms

1 1
O e Al (Vi)
Py by
and
- p. p. —
p"+ Pe _ 2 PR - (VIl-2)
P, Pe o, 4+ pR
Across the rarefaction, entropy is conserved,
P. . /p.
Pe o, (VI1-3)

Finally, a characteristic line dx/dt = u + ¢ goes across the
rarefaction (sec Chap. 111) so that

D Y.
2 P, 2 [

vy - 1N ¢ Ty TIN D, (VHi-4)

We thus have the required four relations among the four
unknowns. It is convenient to define

p. P
AT

o (VIL-5)
p = Pe

Py

so that X is known from the initial configuration.
Straightforward manipulation of Egs. (VII-1) through
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(VII4) fesults in an equation determining P in terms of A
and y:

(1- Py oy = oy @THY (V11-8)
7Y(1+P) -1 + P )
%(1-3) 16
=—2—’L[1-(P—) 7] . (VIL6) Po,
(r-1? A =1, — (V11.9)
. PR
Some values of P for various values of A and ¥ are shown
in Table VII-1. P,
With P determined, the remaining unknown quan- I, — (VII-10)
tities are easily calculated: PL
_ 1(1+P) + (P - 1)
PR = P4 - VII-7
Y(1+P) + (P - 1) (VII-7) . % (1 _ .I_L> VILLL)
-1 Iy
TABLE VII-1
TABLE OF VALUES OF P FOR VARIOUS VALUES OF )\ AND 7:
THE SHOCK TUBE PROBLEM
A 7=1.1 7=1.2 7=1.333 7=1.4 7=1.5 7=1.667 1=2.0
2 1.40944 1.40648 1.40320 1.40179 1.39991 1.39727 1.39330
3 1.71578 1.70710 1.69751 1.69339 1.68789 1.68018 1.66859
4 1.96809 1.95271 1.93575 1.92846 1.91875 1.90514 1.88474
) 2.18575 2.16326 2.13850 2.12787 2.11372 2.09391 2.06428
6 2.37880 2.34904 2.31632 2.30229 2.28362 2.25753 2.21857
7 2.55323 2.51617 2.47546 2.45803 243484 240248 2.35425
8 2.71298 2.66864 2.61998 2.59917 2.57151 2.53294 247558
9 2.86078 2.80921 2.75268 2.72853 2.69645 2.65178 2.58546
10 2.99862 2.93289 2.87560 2.84816 281174 2.76107 2.68597
i1 3.12799 3.06220 2.99026 2.95958 2.91889 2.86233 2.77865
12 3.25006 3.17731 3.09784 3.06397 3.01908 2.95676 2.86168
13 3.36576 3.28614 3.19926 3.16226 3.11326 3.04529 2.94500
14 3.47585 3.38946 3.29528 3.25521 3.20217 3.12865 3.02035
15 3.58093 3.48787 3.38651 3.34342 3.28641 3.20746 3.09132
16 3.68152 3.58188 347346 3.42740 3.36650 3.28223 3.1584]
17 3.77805 3.67194 3.55656 3.50759 3.44286 3.35337 3.22204
18 3.87091 3.75840 3.63618 3.58434 3.51585 342124 3.28256
19 3.96039 3.84159 3.71263 3.65796 3.58579 3.48614 3.34026
20 4.04679 3.92177 3.78618 3.72874 3.65293 3.54835 3.39541
21 4.13035 3.99920 3.85706 3.79689 3.71751 3.60808 3.44822
22 4.21127 4.07407 3.92549 3.86262 3.77973 3.66554 3.49889
23 4.28974 4.14657 3.99164 3.92613 3.83978 3.72090 3.54759
24 4.36594 4.21688 4.05568 3.98756 3.89781 3.77432 3.59447
25 4.44001 4.28513 4.04706 3.95396 3.82594 3.63967
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The shock moves with absolute sﬁeed

v= PR (VIL12)
PR™ P+

The point ¢ moves with absolute speed u;, while the

points a and b move with sound speed relative to the gas,
or with absolute speeds

Va = u~v7r@- DI, (ViI-13)
vy = —\/117-1510 (VII-14)

B. Shock Hitting a Density Discontinuity.

1. The Step Down in Density. In the simplest form
of this problem, a one-dimensional shock passes through a
uniform polytropic gas which is cold and at rest (Fig.
VII-2). At some point, it strikes a discontinuity in
material, beyond which there is another (different)
uniform polytropic gas which also initially is cold and at
rest. Our problem is to determine the dynamics after the

INCOMING
SHOCK
P. —
l P_,O :P+,°
)
|
BEFORE STRIKING - X
Yy
2
P b |
|
\ |
PL | p
o 1
Bk
P LAe
L1
AFTER STRIKING - X
Y 7.
12
Fig. VII-2.

Shock hitting a step down in density.

collision. We tentatively assume that a rarefaction: is
reflected. The condition under which this is the case will
follow from the analysis. In any case, a shock will be
transmitted into the material to the right.

The incoming shock is characterized by the infinite
shock relations of Chap. VI:

ntl
p._p.,o ‘yl—l
v, 7‘+l
= u
S 2

(VIL-15)

The analysis follows closely that for the shock tube
problem. The same quantities (with the same symbols) are
unknown, and the four equations determining them are

1 1 )
= - \=_,2
PR_7+1
Py M1
(VII-16)
'y N
B (FL)
1P P
u+ 2 L 2 [T
N Al N Y} i N J
Define, for convenience,
p=> , (VII-17)
Pc
+1
Azl D (VIL-18)
Pro (1, +1)

where A is known from the input conditions and P is to
be determined. Some manipulation shows that P js
determined in terms of A and 71 by
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If, now, a rarefaction is indeed reflected, then P> 1 is
required. This corresponds to A > 1, which, therefore, is
the required condition for a reflected rarefaction. Some
values of P for various values of A and v, are given in
Table VII.2,

With P known, the other unknown quantities can be
calculated:

2 (ViI-19)
2P
v -1

-l/»y 9
pL = p.(P) !
by, + 1
- 57
PR = Py (,),2 - l)

(VII-20)
- /A
U = uqfp
AR

V(right shock) = u (‘L2“> J

The points a and b move to the left with sound speed
relative to the material, One may notice, however, that
the point b moves to the right relative to the rest frame if
T <2.

If P+.0 =0 (the shock hits a free surface), one can
show that the free surface will move with the sum of the
material speed in the shock plus the escape speed of the
shocked material. This is proved as follows. As P+ >0,
A =0 and P > o0, From Eq. (VII-19), we see that

2

A 2'y|+
WA

so that, from Eq. (VII-20),

[ 2y
u.=su {1+ L
7 1

Using the infinite shock relations, this becomes

2c,
Uc-bll_ + 7 - l »

with the second term being the escape speed.
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2. The Step Up in Density. A second case must also
be considered in which a shock is reflected from the
discontinuity (Fig. VII-3). It is expected that this will
occur if A < 1. We shall indeed see the general result

P.o (v, +1) | > 1 rarefaction reflected | Vi)
Pr oy, ¥ 1) 1< 1 shock reflected (Vii-2

In the reflected-shock case, the four conditions relating
the four unknowns are all derived from shock relations:

+ 1 ‘
R _% , (VII-22)
p+,o v — 1
2
2p,
== (it (Vi1-23)
Py g
P.—p p. —p
ey L (VI1-24)
P. * p. oo+ py
(p. - )l—“'L = = (u, =~ u)?
L Py e T U (VI1-25)
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Fig. VII-3.

Shock hitting a step up in deisity.
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